Your browser doesn't support javascript.
loading
Afi-Chip: An Equipment-Free, Low-Cost, and Universal Binding Ligand Affinity Evaluation Platform.
Song, Yanling; Shi, Yuanzhi; Li, Xingrui; Ma, Yanli; Gao, Mingxuan; Liu, Dan; Mao, Yu; Zhu, Zhi; Lin, Hui; Yang, Chaoyong.
Afiliação
  • Song Y; MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Engineering, Depart
  • Shi Y; MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Engineering, Depart
  • Li X; MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Engineering, Depart
  • Ma Y; MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Engineering, Depart
  • Gao M; MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Engineering, Depart
  • Liu D; MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Engineering, Depart
  • Mao Y; MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Engineering, Depart
  • Zhu Z; MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Engineering, Depart
  • Lin H; MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Engineering, Depart
  • Yang C; MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Engineering, Depart
Anal Chem ; 88(16): 8294-301, 2016 08 16.
Article em En | MEDLINE | ID: mdl-27454185
ABSTRACT
Binding affinity characterization is of great importance for aptamer screening because the dissociation constant (Kd) value is a key parameter for evaluating molecular interaction. However, conventional methods often require sophisticated equipment and time-consuming processing. Here, we present a portable device, Afi-Chip, as an equipment-free, rapid, low-cost, and universal platform for evaluation of the aptamer affinity. The Afi-Chip displays a distance readout based on the reaction of an enzyme catalyzing the decomposition of H2O2 for gas generation to push the movement of ink bar. Taking advantage of translating the recognition signal to distance signal and realizing the regents mixing and quantitative readout on the chip, we successfully monitored the aptamer evolution process and characterized binding affinity of aptamers against multiple types of targets, including small molecule glucose, cancer biomarker protein EpCAM, and tumor cell SW620. We also applied the Afi-Chip for rapid characterization of the affinity between anti-HCG and HCG to demonstrate the generality for the molecular interaction study. All of the Kd values obtained are comparable to those reported in the literature or obtained by sophisticated instruments such as a flow cytometer. The Afi-Chip offers a new approach for equipment-free investigation of molecular interactions, such as aptamer identification, ligand selection monitoring, and drug screening.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Health_economic_evaluation Idioma: En Revista: Anal Chem Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Health_economic_evaluation Idioma: En Revista: Anal Chem Ano de publicação: 2016 Tipo de documento: Article