Your browser doesn't support javascript.
loading
Gene Discovery for Synthetic Biology: Exploring the Novel Natural Product Biosynthetic Capacity of Eukaryotic Microalgae.
O'Neill, E C; Saalbach, G; Field, R A.
Afiliação
  • O'Neill EC; University of Oxford, Oxford, United Kingdom. Electronic address: ellis.oneill@plants.ox.ac.uk.
  • Saalbach G; John Innes Centre, Norwich, United Kingdom.
  • Field RA; John Innes Centre, Norwich, United Kingdom. Electronic address: rob.field@jic.ac.uk.
Methods Enzymol ; 576: 99-120, 2016.
Article em En | MEDLINE | ID: mdl-27480684
ABSTRACT
Eukaryotic microalgae are an incredibly diverse group of organisms whose sole unifying feature is their ability to photosynthesize. They are known for producing a range of potent toxins, which can build up during harmful algal blooms causing damage to ecosystems and fisheries. Genome sequencing is lagging behind in these organisms because of their genetic complexity, but transcriptome sequencing is beginning to make up for this deficit. As more sequence data becomes available, it is apparent that eukaryotic microalgae possess a range of complex natural product biosynthesis capabilities. Some of the genes concerned are responsible for the biosynthesis of known toxins, but there are many more for which we do not know the products. Bioinformatic and analytical techniques have been developed for natural product discovery in bacteria and these approaches can be used to extract information about the products synthesized by algae. Recent analyses suggest that eukaryotic microalgae produce many complex natural products that remain to be discovered.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Produtos Biológicos / Genômica / Euglena / Vias Biossintéticas / Microalgas / Biologia Sintética Idioma: En Revista: Methods Enzymol Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Produtos Biológicos / Genômica / Euglena / Vias Biossintéticas / Microalgas / Biologia Sintética Idioma: En Revista: Methods Enzymol Ano de publicação: 2016 Tipo de documento: Article