Your browser doesn't support javascript.
loading
Construction of PLGA Nanoparticles Coated with Polycistronic SOX5, SOX6, and SOX9 Genes for Chondrogenesis of Human Mesenchymal Stem Cells.
Park, Ji Sun; Yi, Se Won; Kim, Hye Jin; Kim, Seong Min; Kim, Jae-Hwan; Park, Keun-Hong.
Afiliação
  • Park JS; Department of Biomedical Science, College of Life Science, CHA University , 6F, CHA Bio-complex, 689 Sampyeong-dong Bundang-gu, Seongnam-si 134-88, Korea.
  • Yi SW; Department of Biomedical Science, College of Life Science, CHA University , 6F, CHA Bio-complex, 689 Sampyeong-dong Bundang-gu, Seongnam-si 134-88, Korea.
  • Kim HJ; Department of Biomedical Science, College of Life Science, CHA University , 6F, CHA Bio-complex, 689 Sampyeong-dong Bundang-gu, Seongnam-si 134-88, Korea.
  • Kim SM; Department of Biomedical Science, College of Life Science, CHA University , 6F, CHA Bio-complex, 689 Sampyeong-dong Bundang-gu, Seongnam-si 134-88, Korea.
  • Kim JH; Department of Biomedical Science, College of Life Science, CHA University , 6F, CHA Bio-complex, 689 Sampyeong-dong Bundang-gu, Seongnam-si 134-88, Korea.
  • Park KH; Department of Biomedical Science, College of Life Science, CHA University , 6F, CHA Bio-complex, 689 Sampyeong-dong Bundang-gu, Seongnam-si 134-88, Korea.
ACS Appl Mater Interfaces ; 9(2): 1361-1372, 2017 Jan 18.
Article em En | MEDLINE | ID: mdl-28005327
ABSTRACT
Transfection of a cocktail of genes into cells has recently attracted attraction in stem cell differentiation. However, it is not easy to control the transfection rate of each gene. To control and regulate gene delivery into human mesenchymal stem cells (hMSCs), we employed multicistronic genes coupled with a nonviral gene carrier system for stem cell differentiation. Three genes, SOX5, SOX6, and SOX9, were successfully fabricated in a single plasmid. This multicistronic plasmid was complexed with the polycationic polymer polyethylenimine, and poly(lactic-co-glycolic) acid (PLGA) nanoparticles were coated with this complex. The uptake of PLGA nanoparticles complexed with the multicistronic plasmid was tested first. Thereafter, transfection of SOX5, SOX6, and SOX9 was evaluated, which increased the potential for chondrogenesis of hMSCs. The expression of specific genes triggered by transfection of SOX5, SOX6, and SOX9 was tested by RT-PCR and real-time qPCR. Furthermore, specific proteins related to chondrocytes were investigated by a glycosaminoglycan/DNA assay, Western blotting, histological analyses, and immunofluorescence staining. These methods demonstrated that chondrogenesis of hMSCs treated with PLGA nanoparticles carrying this multicistronic genes was better than that of hMSCs treated with other carriers. Furthermore, the multicistronic genes complexed with PLGA nanoparticles were more simple than that of each single gene complexation with PLGA nanoparticles. Multicistronic genes showed more chondrogenic differentiation than each single gene transfection methods.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanopartículas Limite: Humans Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanopartículas Limite: Humans Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2017 Tipo de documento: Article