Your browser doesn't support javascript.
loading
ZnO decorated germanium nanoparticles as anode materials in Li-ion batteries.
Kim, Tae-Hee; Park, Song Yi; Lee, Tack Ho; Jeong, Jaeki; Kim, Dong Suk; Swihart, Mark T; Song, Hyun-Kon; Kim, Jin Young; Kim, Seongbeom.
Afiliação
  • Kim TH; School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919,  Republic of Korea.
Nanotechnology ; 28(9): 095402, 2017 Mar 03.
Article em En | MEDLINE | ID: mdl-28067209
ABSTRACT
Germanium exhibits high charge capacity and high lithium diffusivity, both are the key requirements for electrode materials in high performance lithium ion batteries (LIBs). However, high volume expansion and segregation from the electrode during charge-discharge cycling have limited use of germanium in LIBs. Here, we demonstrate that ZnO decorated Ge nanoparticles (Ge@ZnO NPs) can overcome these limitations of Ge as an LIB anode material. We produced Ge NPs at high rates by laser pyrolysis of GeH4, then coated them with solution phase synthesized ZnO NPs. Half-cell tests revealed dramatically enhanced cycling stability and higher rate capability of Ge@ZnO NPs compared to Ge NPs. Enhancements arise from the core-shell structure of Ge@ZnO NPs as well as production of metallic Zn from the ZnO layer. These findings not only demonstrate a new surface treatment for Ge NPs, but also provide a new opportunity for development of high-rate LIBs.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanotechnology Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanotechnology Ano de publicação: 2017 Tipo de documento: Article