Your browser doesn't support javascript.
loading
Differential binding of monovalent cations to KcsA: Deciphering the mechanisms of potassium channel selectivity.
Montoya, Estefanía; Lourdes Renart, M; Marcela Giudici, A; Poveda, José A; Fernández, Asia M; Morales, Andrés; González-Ros, José M.
Afiliação
  • Montoya E; Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain.
  • Lourdes Renart M; Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain.
  • Marcela Giudici A; Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain.
  • Poveda JA; Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain.
  • Fernández AM; Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain.
  • Morales A; Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain.
  • González-Ros JM; Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain. Electronic address: gonzalez.ros@umh.es.
Biochim Biophys Acta Biomembr ; 1859(5): 779-788, 2017 May.
Article em En | MEDLINE | ID: mdl-28088447
This work explores whether the ion selectivity and permeation properties of a model potassium channel, KcsA, could be explained based on ion binding features. Non-permeant Na+ or Li+ bind with low affinity (millimolar KD's) to a single set of sites contributed by the S1 and S4 sites seen at the selectivity filter in the KcsA crystal structure. Conversely, permeant K+, Rb+, Tl+ and even Cs+ bind to two different sets of sites as their concentration increases, consistent with crystallographic evidence on the ability of permeant species to induce concentration-dependent transitions between conformational states (non-conductive and conductive) of the channel's selectivity filter. The first set of such sites, assigned also to the crystallographic S1 and S4 sites, shows similarly high affinities for all permeant species (micromolar KD's), thus, securing displacement of potentially competing non-permeant cations. The second set of sites, available only to permeant cations upon the transition to the conductive filter conformation, shows low affinity (millimolar KD's), thus, favoring cation dissociation and permeation and results from the contribution of all S1 through S4 crystallographic sites. The differences in affinities between permeant and non-permeant cations and the similarities in binding behavior within each of these two groups, correlate fully with their permeabilities relative to K+, suggesting that binding is an important determinant of the channel's ion selectivity. Conversely, the complexity observed in permeation features cannot be explained just in terms of binding and likely relates to reported differences in the occupancy of the S2 and S3 sites by the permeant cations.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Bactérias / Canais de Potássio Idioma: En Revista: Biochim Biophys Acta Biomembr Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Espanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Bactérias / Canais de Potássio Idioma: En Revista: Biochim Biophys Acta Biomembr Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Espanha