Your browser doesn't support javascript.
loading
Automated cell type discovery and classification through knowledge transfer.
Lee, Hao-Chih; Kosoy, Roman; Becker, Christine E; Dudley, Joel T; Kidd, Brian A.
Afiliação
  • Lee HC; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mt. Sinai, New York, NY, USA.
  • Kosoy R; Icahn School of Medicine at Mt. Sinai, Institute for Next Generation Healthcare, New York, NY, USA.
  • Becker CE; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mt. Sinai, New York, NY, USA.
  • Dudley JT; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mt. Sinai, New York, NY, USA.
  • Kidd BA; Icahn School of Medicine at Mt. Sinai, Institute for Next Generation Healthcare, New York, NY, USA.
Bioinformatics ; 33(11): 1689-1695, 2017 Jun 01.
Article em En | MEDLINE | ID: mdl-28158442
MOTIVATION: Recent advances in mass cytometry allow simultaneous measurements of up to 50 markers at single-cell resolution. However, the high dimensionality of mass cytometry data introduces computational challenges for automated data analysis and hinders translation of new biological understanding into clinical applications. Previous studies have applied machine learning to facilitate processing of mass cytometry data. However, manual inspection is still inevitable and becoming the barrier to reliable large-scale analysis. RESULTS: We present a new algorithm called utomated ell-type iscovery and lassification (ACDC) that fully automates the classification of canonical cell populations and highlights novel cell types in mass cytometry data. Evaluations on real-world data show ACDC provides accurate and reliable estimations compared to manual gating results. Additionally, ACDC automatically classifies previously ambiguous cell types to facilitate discovery. Our findings suggest that ACDC substantially improves both reliability and interpretability of results obtained from high-dimensional mass cytometry profiling data. AVAILABILITY AND IMPLEMENTATION: A Python package (Python 3) and analysis scripts for reproducing the results are availability on https://bitbucket.org/dudleylab/acdc . CONTACT: brian.kidd@mssm.edu or joel.dudley@mssm.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Citofotometria / Biomarcadores / Biologia Computacional / Análise de Célula Única / Aprendizado de Máquina Tipo de estudo: Guideline Limite: Animals / Humans Idioma: En Revista: Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Citofotometria / Biomarcadores / Biologia Computacional / Análise de Célula Única / Aprendizado de Máquina Tipo de estudo: Guideline Limite: Animals / Humans Idioma: En Revista: Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos