Your browser doesn't support javascript.
loading
Cytotoxic effect of different treatment parameters in pressurized intraperitoneal aerosol chemotherapy (PIPAC) on the in vitro proliferation of human colonic cancer cells.
Khosrawipour, Veria; Diaz-Carballo, David; Acikelli, Ali-Haydar; Khosrawipour, Tanja; Falkenstein, Thomas Albert; Wu, Dan; Zieren, Jürgen; Giger-Pabst, Urs.
Afiliação
  • Khosrawipour V; Department of General Surgery and Therapy Center for Peritonealcarcinomatosis, St. Mary's Hospital Herne, Ruhr University of Bochum, Hölkeskampring 40, 44625, Herne, Germany.
  • Diaz-Carballo D; Basic Research Laboratory Department of Surgery, St. Mary's Hospital Herne, Ruhr University of Bochum, Herne, Germany.
  • Acikelli AH; Department of Hematology and Medical Oncology, St. Mary's Hospital Herne, Ruhr University Bochum, Herne, Germany.
  • Khosrawipour T; Department of Hematology and Medical Oncology, St. Mary's Hospital Herne, Ruhr University Bochum, Herne, Germany.
  • Falkenstein TA; Department of General Surgery and Therapy Center for Peritonealcarcinomatosis, St. Mary's Hospital Herne, Ruhr University of Bochum, Hölkeskampring 40, 44625, Herne, Germany. tanja.khosrawipour@rub.de.
  • Wu D; Basic Research Laboratory Department of Surgery, St. Mary's Hospital Herne, Ruhr University of Bochum, Herne, Germany. tanja.khosrawipour@rub.de.
  • Zieren J; Basic Research Laboratory Department of Surgery, St. Mary's Hospital Herne, Ruhr University of Bochum, Herne, Germany.
  • Giger-Pabst U; Department of General Surgery and Therapy Center for Peritonealcarcinomatosis, St. Mary's Hospital Herne, Ruhr University of Bochum, Hölkeskampring 40, 44625, Herne, Germany.
World J Surg Oncol ; 15(1): 43, 2017 02 10.
Article em En | MEDLINE | ID: mdl-28183319
BACKGROUND: Pressurized intraperitoneal aerosol chemotherapy (PIPAC) has been recently reported as a new approach for intraperitoneal chemotherapy (IPC). By means of a patented micropump, the liquid chemotherapy is delivered into the peritoneal cavity as an aerosol which is supposed to achieve "gas-like" distribution. However, recent data report that the fraction of the submicron aerosol (gas-like) is less than 3 vol% of the total amount of aerosolized chemotherapy. Until today, possible modifications of treatment parameters during PIPAC with the aim of improving therapeutic outcomes have not been studied yet. This study aims to establish an in vitro PIPAC model to explore the cytotoxic effect of the submicron aerosol fraction and to investigate the impact of different application parameters on the cytotoxic effect of PIPAC on human colonic cancer cells. METHODS: An in vitro model using HCT8 colon adenocarcinoma wild-type cells (HCT8WT) and multi-chemotherapy refractory subline (HCT8RT) was established. Different experimental parameters such as pressure, drug dosage, time exposure, and system temperature were monitored in order to search for the conditions with a higher impact on cell toxicity. Cell proliferation was determined by means of colorimetric MTT assay 48 h following PIPAC exposures. RESULTS: Standard operational parameters applied for PIPAC therapy depicted a cytotoxic effect of the submicron aerosol fraction generated by the PIPAC micropump. We also observed that increasing pressure significantly enhanced tumor cell toxicity in both wild-type and chemotherapy-resistant cells. A maximum of cytotoxicity was observed at 15 mmHg. Pressure >15 mmHg did not show additional cytotoxic effect on cells. Increased oxaliplatin dosage resulted in progressively higher cell toxicity as expected. However, in resistant cells, a significant effect was only found at higher drug concentrations. Neither an extension of exposure time nor an increase in temperature of the aerosolized chemotherapy solution added an improvement in cytotoxicity. CONCLUSIONS: In this in vitro PIPAC model, the gas-like PIPAC aerosol fraction showed a cytotoxic effect which was enhanced by higher intra-abdominal pressure with a maximum at 15 mmHg. Similar findings were observed for drug dose escalation. A phase I dose escalation study is currently performed at our institution. However, increasing the intra-abdominal pressure might be a first and simple way to enhance the cytotoxic effect of PIPAC therapy which needs further clinical investigations.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Compostos Organoplatínicos / Peritônio / Neoplasias do Colo / Proliferação de Células / Antineoplásicos Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: World J Surg Oncol Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Compostos Organoplatínicos / Peritônio / Neoplasias do Colo / Proliferação de Células / Antineoplásicos Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: World J Surg Oncol Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Alemanha