Glycogen synthase kinase 3 regulates photic signaling in the suprachiasmatic nucleus.
Eur J Neurosci
; 45(8): 1102-1110, 2017 04.
Article
em En
| MEDLINE
| ID: mdl-28244152
Glycogen synthase kinase 3 (GSK3) is a serine-threonine kinase that regulates mammalian circadian rhythms at the behavioral, molecular and neurophysiological levels. In the central circadian pacemaker, the suprachiasmatic nucleus (SCN), inhibitory phosphorylation of GSK3 exhibits a rhythm across the 24 h day. We have recently shown that GSK3 is capable of influencing both the molecular clock and SCN neuronal activity rhythms. However, it is not known whether GSK3 regulates the response to environmental cues such as light. The goal of this study was to test the hypothesis that GSK3 activation mediates light-induced SCN excitability and photic entrainment. Immunofluorescence staining in the SCN of mice showed that late-night light exposure significantly increased GSK3 activity (decreased pGSK3ß levels) 30-60 min after the light-pulse. In addition, pharmacological inhibition of GSK3 blocked the expected light-induced excitability in SCN neurons; however, this effect was not associated with changes in resting membrane potential or input resistance. Behaviorally, mice with constitutively active GSK3 (GSK3-KI) re-entrained to a 6-h phase advance in the light-dark cycle in significantly fewer days than WT control animals. Furthermore, the behavioral and SCN neuronal activity of GSK3-KI mice was phase-advanced compared to WT, in both normal and light-exposed conditions. Finally, GSK3-KI mice exhibited normal negative-masking behavior and electroretinographic responses to light, suggesting that the enhanced photic entrainment is not due to an overall increased sensitivity to light in these animals. Taken together, these results provide strong evidence that GSK3 activation contributes to light-induced phase-resetting at both the neurophysiological and behavioral levels.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Núcleo Supraquiasmático
/
Ritmo Circadiano
/
Quinase 3 da Glicogênio Sintase
/
Transdução de Sinal Luminoso
/
Relógios Circadianos
/
Neurônios
Limite:
Animals
Idioma:
En
Revista:
Eur J Neurosci
Assunto da revista:
NEUROLOGIA
Ano de publicação:
2017
Tipo de documento:
Article
País de afiliação:
Estados Unidos