Your browser doesn't support javascript.
loading
Theoretical model for laser ablation outcome predictions in brain: calibration and validation on clinical MR thermometry images.
Fahrenholtz, Samuel John; Madankan, Reza; Danish, Shabbar; Hazle, John D; Stafford, R Jason; Fuentes, David.
Afiliação
  • Fahrenholtz SJ; a Department of Imaging Physics , University of Texas MD Anderson Cancer Center , Houston , TX , USA.
  • Madankan R; b Department of Medical Physics , UTHealth Graduate School of Biomedical Sciences , Houston , TX , USA.
  • Danish S; a Department of Imaging Physics , University of Texas MD Anderson Cancer Center , Houston , TX , USA.
  • Hazle JD; c Section of Neurosurgery , Rutgers Cancer Institute of New Jersey , New Brunswick , NJ , USA.
  • Stafford RJ; a Department of Imaging Physics , University of Texas MD Anderson Cancer Center , Houston , TX , USA.
  • Fuentes D; b Department of Medical Physics , UTHealth Graduate School of Biomedical Sciences , Houston , TX , USA.
Int J Hyperthermia ; 34(1): 101-111, 2018 02.
Article em En | MEDLINE | ID: mdl-28540820
ABSTRACT

PURPOSE:

Neurosurgical laser ablation is experiencing a renaissance. Computational tools for ablation planning aim to further improve the intervention. Here, global optimisation and inverse problems are demonstrated to train a model that predicts maximum laser ablation extent.

METHODS:

A closed-form steady state model is trained on and then subsequently compared to N = 20 retrospective clinical MR thermometry datasets. Dice similarity coefficient (DSC) is calculated to provide a measure of region overlap between the 57 °C isotherms of the thermometry data and the model-predicted ablation regions; 57 °C is a tissue death surrogate at thermal steady state. A global optimisation scheme samples the dominant model parameter sensitivities, blood perfusion (ω) and optical parameter (µeff) values, throughout a parameter space totalling 11 440 value-pairs. This represents a lookup table of µeff-ω pairs with the corresponding DSC value for each patient dataset. The µeff-ω pair with the maximum DSC calibrates the model parameters, maximising predictive value for each patient. Finally, leave-one-out cross-validation with global optimisation information trains the model on the entire clinical dataset, and compares against the model naïvely using literature values for ω and µeff.

RESULTS:

When using naïve literature values, the model's mean DSC is 0.67 whereas the calibrated model produces 0.82 during cross-validation, an improvement of 0.15 in overlap with the patient data. The 95% confidence interval of the mean difference is 0.083-0.23 (p < 0.001).

CONCLUSIONS:

During cross-validation, the calibrated model is superior to the naïve model as measured by DSC, with +22% mean prediction accuracy. Calibration empowers a relatively simple model to become more predictive.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Encéfalo / Imageamento por Ressonância Magnética / Terapia a Laser Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Int J Hyperthermia Assunto da revista: NEOPLASIAS / TERAPEUTICA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Encéfalo / Imageamento por Ressonância Magnética / Terapia a Laser Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Int J Hyperthermia Assunto da revista: NEOPLASIAS / TERAPEUTICA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos