Your browser doesn't support javascript.
loading
Ambient temperature and genotype differentially affect developmental and phenotypic plasticity in Arabidopsis thaliana.
Ibañez, Carla; Poeschl, Yvonne; Peterson, Tom; Bellstädt, Julia; Denk, Kathrin; Gogol-Döring, Andreas; Quint, Marcel; Delker, Carolin.
Afiliação
  • Ibañez C; Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, 06120, Halle (Saale), Germany.
  • Poeschl Y; Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany.
  • Peterson T; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.
  • Bellstädt J; Institute of Computer Science, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 1, 06099, Halle (Saale), Germany.
  • Denk K; Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany.
  • Gogol-Döring A; Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, 06120, Halle (Saale), Germany.
  • Quint M; Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany.
  • Delker C; Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, 06120, Halle (Saale), Germany.
BMC Plant Biol ; 17(1): 114, 2017 07 06.
Article em En | MEDLINE | ID: mdl-28683779
ABSTRACT

BACKGROUND:

Global increase in ambient temperatures constitute a significant challenge to wild and cultivated plant species. Forward genetic analyses of individual temperature-responsive traits have resulted in the identification of several signaling and response components. However, a comprehensive knowledge about temperature sensitivity of different developmental stages and the contribution of natural variation is still scarce and fragmented at best.

RESULTS:

Here, we systematically analyze thermomorphogenesis throughout a complete life cycle in ten natural Arabidopsis thaliana accessions grown under long day conditions in four different temperatures ranging from 16 to 28 °C. We used Q10, GxE, phenotypic divergence and correlation analyses to assess temperature sensitivity and genotype effects of more than 30 morphometric and developmental traits representing five phenotype classes. We found that genotype and temperature differentially affected plant growth and development with variing strengths. Furthermore, overall correlations among phenotypic temperature responses was relatively low which seems to be caused by differential capacities for temperature adaptations of individual accessions.

CONCLUSION:

Genotype-specific temperature responses may be attractive targets for future forward genetic approaches and accession-specific thermomorphogenesis maps may aid the assessment of functional relevance of known and novel regulatory components.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Temperatura / Arabidopsis / Interação Gene-Ambiente Tipo de estudo: Systematic_reviews Idioma: En Revista: BMC Plant Biol Assunto da revista: BOTANICA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Temperatura / Arabidopsis / Interação Gene-Ambiente Tipo de estudo: Systematic_reviews Idioma: En Revista: BMC Plant Biol Assunto da revista: BOTANICA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Alemanha