Spatiotemporal Industrial Activity Model for Estimating the Intensity of Oil and Gas Operations in Colorado.
Environ Sci Technol
; 51(17): 10243-10250, 2017 Sep 05.
Article
em En
| MEDLINE
| ID: mdl-28715172
Oil and gas (O&G) production in the United States has increased in the last 15 years, and operations, which are trending toward large multiwell pads, release hazardous air pollutants. Health studies have relied on proximity to O&G wells as an exposure metric, typically using an inverse distance-weighting (IDW) approach. Because O&G emissions are dependent on multiple factors, a dynamic model is needed to describe the variability in air pollution emissions over space and time. We used information on Colorado O&G activities, production volumes, and air pollutant emission rates from two Colorado basins to create a spatiotemporal industrial activity model to develop an intensity-adjusted IDW well-count metric. The Spearman correlation coefficient between this metric and measured pollutant concentrations was 0.74. We applied our model to households in Greeley, Colorado, which is in the middle of the densely developed Denver-Julesburg basin. Our intensity-adjusted IDW increased the unadjusted IDW dynamic range by a factor of 19 and distinguishes high-intensity events, such as hydraulic fracturing and flowback, from lower-intensity events, such as production at single-well pads. As the frequency of multiwell pads increases, it will become increasingly important to characterize the range of intensities at O&G sites when conducting epidemiological studies.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Monitoramento Ambiental
/
Campos de Petróleo e Gás
Tipo de estudo:
Prognostic_studies
País/Região como assunto:
America do norte
Idioma:
En
Revista:
Environ Sci Technol
Ano de publicação:
2017
Tipo de documento:
Article
País de afiliação:
Estados Unidos