Your browser doesn't support javascript.
loading
Characterization of Aluminum-Based-Surface Matrix Composites with Iron and Iron Oxide Fabricated by Friction Stir Processing.
Mahmoud, Essam R I; Tash, Mahmoud M.
Afiliação
  • Mahmoud ERI; Mechanical Engineering, King Khalid University, Abha 61413, Saudi Arabia. emahoud@kku.edu.sa.
  • Tash MM; Welding and NDT Laboratory, Manufacturing Technology Department, Central Metallurgical Research and Development Institute (CMRDI), Cairo 11421, Egypt. emahoud@kku.edu.sa.
Materials (Basel) ; 9(7)2016 Jun 23.
Article em En | MEDLINE | ID: mdl-28773629
ABSTRACT
Surface composite layers were successfully fabricated on an A 1050-H24 aluminum plate by dispersed iron (Fe) and magnetite (Fe3O4) particles through friction stir processing (FSP). Fe and Fe3O4 powders were packed into a groove of 3 mm in width and 1.5 mm in depth, cut on the aluminum plate, and covered with an aluminum sheet that was 2-mm thick. A friction stir processing (FSP) tool of square probe shape, rotated at a rate of 1000-2000 rpm, was plunged into the plate through the cover sheet and the groove, and moved along the groove at a travelling speed of 1.66 mm/s. Double and triple passes were applied. As a result, it is found that the Fe particles were homogenously distributed in the whole nugget zone at a rotation speed of 1000 rpm after triple FSP passes. Limited interfacial reactions occurred between the Fe particles and the aluminum matrix. On the other hand, the lower rotation speed (1000 rpm) was not enough to form a sound nugget when the dispersed particles were changed to the larger Fe3O4. The Fe3O4 particles were dispersed homogenously in a sound nugget zone when the rotation speed was increased to 1500 rpm. No reaction products could be detected between the Fe3O4 particles and the aluminum matrix. The saturation magnetization (Ms) of the Fe-dispersed nugget zone was higher than that of the Fe3O4-dispersed nugget zone. Moreover, there were good agreement between the obtained saturation magnetization values relative to that of pure Fe and Fe3O4 materials and the volume content of the dispersed particles in the nugget zone.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Materials (Basel) Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Arábia Saudita

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Materials (Basel) Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Arábia Saudita