Your browser doesn't support javascript.
loading
Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing.
Mofazzal Jahromi, Mirza Ali; Sahandi Zangabad, Parham; Moosavi Basri, Seyed Masoud; Sahandi Zangabad, Keyvan; Ghamarypour, Ameneh; Aref, Amir R; Karimi, Mahdi; Hamblin, Michael R.
Afiliação
  • Mofazzal Jahromi MA; Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences (JUMS), Jahrom, Iran; Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences (JUMS), Jahrom, Iran.
  • Sahandi Zangabad P; Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science (TUOMS), Tabriz, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Bio-Nano-Interfaces: Convergence of Sciences (BNICS), Universal Scientific Education and Re
  • Moosavi Basri SM; Bio-Nano-Interfaces: Convergence of Sciences (BNICS), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Bioenvironmental Research Center, Sharif University of Technology, Tehran, Iran; Civil & Environmental Engineering Department, Shahid Beheshti University, Tehran, Iran
  • Sahandi Zangabad K; Bio-Nano-Interfaces: Convergence of Sciences (BNICS), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Polymer Engineering, Sahand University of Technology, PO Box 51335-1996, Tabriz, Iran; Nanomedicine Research Association (NRA), Universal Scientific Educatio
  • Ghamarypour A; Bio-Nano-Interfaces: Convergence of Sciences (BNICS), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Biology, Science and Research Branch, Islamic Azad university, Tehran, Iran.
  • Aref AR; Department of Medical Oncology, Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
  • Karimi M; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Research Center for Science and Technology in Medicine, Tehran University
  • Hamblin MR; Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Department of Dermatology, Harvard Medical School, Boston, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, USA. Electronic address: hamblin@helix.mgh.harvard.edu.
Adv Drug Deliv Rev ; 123: 33-64, 2018 01 01.
Article em En | MEDLINE | ID: mdl-28782570
According to the latest report from the World Health Organization, an estimated 265,000 deaths still occur every year as a direct result of burn injuries. A widespread range of these deaths induced by burn wound happens in low- and middle-income countries, where survivors face a lifetime of morbidity. Most of the deaths occur due to infections when a high percentage of the external regions of the body area is affected. Microbial nutrient availability, skin barrier disruption, and vascular supply destruction in burn injuries as well as systemic immunosuppression are important parameters that cause burns to be susceptible to infections. Topical antimicrobials and dressings are generally employed to inhibit burn infections followed by a burn wound therapy, because systemic antibiotics have problems in reaching the infected site, coupled with increasing microbial drug resistance. Nanotechnology has provided a range of molecular designed nanostructures (NS) that can be used in both therapeutic and diagnostic applications in burns. These NSs can be divided into organic and non-organic (such as polymeric nanoparticles (NPs) and silver NPs, respectively), and many have been designed to display multifunctional activity. The present review covers the physiology of skin, burn classification, burn wound pathogenesis, animal models of burn wound infection, and various topical therapeutic approaches designed to combat infection and stimulate healing. These include biological based approaches (e.g. immune-based antimicrobial molecules, therapeutic microorganisms, antimicrobial agents, etc.), antimicrobial photo- and ultrasound-therapy, as well as nanotechnology-based wound healing approaches as a revolutionizing area. Thus, we focus on organic and non-organic NSs designed to deliver growth factors to burned skin, and scaffolds, dressings, etc. for exogenous stem cells to aid skin regeneration. Eventually, recent breakthroughs and technologies with substantial potentials in tissue regeneration and skin wound therapy (that are as the basis of burn wound therapies) are briefly taken into consideration including 3D-printing, cell-imprinted substrates, nano-architectured surfaces, and novel gene-editing tools such as CRISPR-Cas.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cicatrização / Queimaduras / Peptídeos Catiônicos Antimicrobianos / Nanomedicina / Imunoterapia / Infecções / Antibacterianos Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Adv Drug Deliv Rev Assunto da revista: FARMACOLOGIA / TERAPIA POR MEDICAMENTOS Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Irã

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cicatrização / Queimaduras / Peptídeos Catiônicos Antimicrobianos / Nanomedicina / Imunoterapia / Infecções / Antibacterianos Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Adv Drug Deliv Rev Assunto da revista: FARMACOLOGIA / TERAPIA POR MEDICAMENTOS Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Irã