Your browser doesn't support javascript.
loading
Mechanism of Enzyme Repair by the AAA+ Chaperone Rubisco Activase.
Bhat, Javaid Y; Milicic, Goran; Thieulin-Pardo, Gabriel; Bracher, Andreas; Maxwell, Andrew; Ciniawsky, Susanne; Mueller-Cajar, Oliver; Engen, John R; Hartl, F Ulrich; Wendler, Petra; Hayer-Hartl, Manajit.
Afiliação
  • Bhat JY; Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
  • Milicic G; Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
  • Thieulin-Pardo G; Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
  • Bracher A; Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
  • Maxwell A; Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
  • Ciniawsky S; Gene Center Munich, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany.
  • Mueller-Cajar O; Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
  • Engen JR; Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115-5000, USA.
  • Hartl FU; Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
  • Wendler P; Gene Center Munich, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany. Electronic address: petra.wendler@uni-potsdam.de.
  • Hayer-Hartl M; Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany. Electronic address: mhartl@biochem.mpg.de.
Mol Cell ; 67(5): 744-756.e6, 2017 Sep 07.
Article em En | MEDLINE | ID: mdl-28803776
ABSTRACT
How AAA+ chaperones conformationally remodel specific target proteins in an ATP-dependent manner is not well understood. Here, we investigated the mechanism of the AAA+ protein Rubisco activase (Rca) in metabolic repair of the photosynthetic enzyme Rubisco, a complex of eight large (RbcL) and eight small (RbcS) subunits containing eight catalytic sites. Rubisco is prone to inhibition by tight-binding sugar phosphates, whose removal is catalyzed by Rca. We engineered a stable Rca hexamer ring and analyzed its functional interaction with Rubisco. Hydrogen/deuterium exchange and chemical crosslinking showed that Rca structurally destabilizes elements of the Rubisco active site with remarkable selectivity. Cryo-electron microscopy revealed that Rca docks onto Rubisco over one active site at a time, positioning the C-terminal strand of RbcL, which stabilizes the catalytic center, for access to the Rca hexamer pore. The pulling force of Rca is fine-tuned to avoid global destabilization and allow for precise enzyme repair.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Plantas / Ribulose-Bifosfato Carboxilase / Proteínas de Bactérias / Rhodobacter sphaeroides / Ativador de Plasminogênio Tecidual / Chaperonas Moleculares Idioma: En Revista: Mol Cell Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Plantas / Ribulose-Bifosfato Carboxilase / Proteínas de Bactérias / Rhodobacter sphaeroides / Ativador de Plasminogênio Tecidual / Chaperonas Moleculares Idioma: En Revista: Mol Cell Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Alemanha