Your browser doesn't support javascript.
loading
Survey design for precise fire management conservation targets.
Sitters, Holly; Di Stefano, Julian; Wills, Timothy; Swan, Matthew; York, Alan.
Afiliação
  • Sitters H; School of Ecosystem and Forest Sciences, University of Melbourne, 4 Water Street, Creswick, Victoria, Australia.
  • Di Stefano J; School of Ecosystem and Forest Sciences, University of Melbourne, 4 Water Street, Creswick, Victoria, Australia.
  • Wills T; GHD, Level 8, 180 Lonsdale Street, Melbourne, Victoria, Australia.
  • Swan M; School of Ecosystem and Forest Sciences, University of Melbourne, 4 Water Street, Creswick, Victoria, Australia.
  • York A; School of Ecosystem and Forest Sciences, University of Melbourne, 4 Water Street, Creswick, Victoria, Australia.
Ecol Appl ; 28(1): 35-45, 2018 01.
Article em En | MEDLINE | ID: mdl-28901043
Common goals of ecological fire management are to sustain biodiversity and minimize extinction risk. A novel approach to achieving these goals determines the relative proportions of vegetation growth stages (equivalent to successional stages, which are categorical representations of time since fire) that maximize a biodiversity index. The method combines data describing species abundances in each growth stage with numerical optimization to define an optimal growth-stage structure that provides a conservation-based operational target for managers. However, conservation targets derived from growth-stage optimization are likely to depend critically on choices regarding input data. There is growing interest in the use of growth-stage optimization as a basis for fire management, thus understanding of how input data influence the outputs is crucial. Simulated data sets provide a flexible platform for systematically varying aspects of survey design and species inclusions. We used artificial data with known properties, and a case-study data set from southeastern Australia, to examine the influence of (1) survey design (total number of sites and their distribution among growth stages) and (2) species inclusions (total number of species and their level of specialization) on the precision of conservation targets. Based on our findings, we recommend that survey designs for precise estimates would ideally involve at least 80 sites, and include at least 80 species. Greater numbers of sites and species will yield increasingly reliable results, but fewer might be sufficient in some circumstances. An even distribution of sites among growth stages was less important than the total number of sites, and omission of species is unlikely to have a major influence on results as long as several species specialize on each growth stage. We highlight the importance of examining the responses of individual species to growth stage before feeding survey data into the growth-stage optimization black box, and advocate use of a resampling procedure to determine the precision of results. Collectively, our findings form a reproducible guide to designing ecological surveys that yield precise conservation targets through growth-stage optimization, and ultimately help sustain biodiversity in fire-prone systems.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Conservação dos Recursos Naturais / Biodiversidade / Ecologia / Incêndios Tipo de estudo: Prognostic_studies / Qualitative_research / Risk_factors_studies Limite: Animals País/Região como assunto: Oceania Idioma: En Revista: Ecol Appl Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Austrália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Conservação dos Recursos Naturais / Biodiversidade / Ecologia / Incêndios Tipo de estudo: Prognostic_studies / Qualitative_research / Risk_factors_studies Limite: Animals País/Região como assunto: Oceania Idioma: En Revista: Ecol Appl Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Austrália