Your browser doesn't support javascript.
loading
Retinoid X Receptor Activation Alters the Chromatin Landscape To Commit Mesenchymal Stem Cells to the Adipose Lineage.
Shoucri, Bassem M; Martinez, Eric S; Abreo, Timothy J; Hung, Victor T; Moosova, Zdena; Shioda, Toshi; Blumberg, Bruce.
Afiliação
  • Shoucri BM; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697-2300.
  • Martinez ES; Medical Scientist Training Program, University of California, Irvine, Irvine, California 92697.
  • Abreo TJ; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697-2300.
  • Hung VT; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697-2300.
  • Moosova Z; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697-2300.
  • Shioda T; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697-2300.
  • Blumberg B; Masaryk University, Faculty of Science, RECETOX, 625 00 Brno, Czech Republic.
Endocrinology ; 158(10): 3109-3125, 2017 10 01.
Article em En | MEDLINE | ID: mdl-28977589
ABSTRACT
Developmental exposure to environmental factors has been linked to obesity risk later in life. Nuclear receptors are molecular sensors that play critical roles during development and, as such, are prime candidates to explain the developmental programming of disease risk by environmental chemicals. We have previously characterized the obesogen tributyltin (TBT), which activates the nuclear receptors peroxisome proliferator-activated receptor γ (PPARγ) and retinoid X receptor (RXR) to increase adiposity in mice exposed in utero. Mesenchymal stem cells (MSCs) from these mice are biased toward the adipose lineage at the expense of the osteoblast lineage, and MSCs exposed to TBT in vitro are shunted toward the adipose fate in a PPARγ-dependent fashion. To address where in the adipogenic cascade TBT acts, we developed an in vitro commitment assay that permitted us to distinguish early commitment to the adipose lineage from subsequent differentiation. TBT and RXR activators (rexinoids) had potent effects in committing MSCs to the adipose lineage, whereas the strong PPARγ activator rosiglitazone was inactive. We show that activation of RXR is sufficient for adipogenic commitment and that rexinoids act through RXR to alter the transcriptome in a manner favoring adipogenic commitment. RXR activation alters expression of enhancer of zeste homolog 2 (EZH2) and modifies genome-wide histone 3 lysine 27 trimethylation (H3K27me3) in promoting adipose commitment and programming subsequent differentiation. These data offer insights into the roles of RXR and EZH2 in MSC lineage specification and shed light on how endocrine-disrupting chemicals such as TBT can reprogram stem cell fate.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cromatina / Adipócitos / Receptores X de Retinoides / Adipogenia / Células-Tronco Mesenquimais Tipo de estudo: Etiology_studies Limite: Animals Idioma: En Revista: Endocrinology Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cromatina / Adipócitos / Receptores X de Retinoides / Adipogenia / Células-Tronco Mesenquimais Tipo de estudo: Etiology_studies Limite: Animals Idioma: En Revista: Endocrinology Ano de publicação: 2017 Tipo de documento: Article