Your browser doesn't support javascript.
loading
Locally epistatic models for genome-wide prediction and association by importance sampling.
Akdemir, Deniz; Jannink, Jean-Luc; Isidro-Sánchez, Julio.
Afiliação
  • Akdemir D; StatGen Consulting, Ithaca, NY, USA. akdemir@statgenconsulting.com.
  • Jannink JL; Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY, USA.
  • Isidro-Sánchez J; Department of Animal and Crop Science, University College Dublin, Dublin, Ireland.
Genet Sel Evol ; 49(1): 74, 2017 10 17.
Article em En | MEDLINE | ID: mdl-29041917
BACKGROUND: In statistical genetics, an important task involves building predictive models of the genotype-phenotype relationship to attribute a proportion of the total phenotypic variance to the variation in genotypes. Many models have been proposed to incorporate additive genetic effects into prediction or association models. Currently, there is a scarcity of models that can adequately account for gene by gene or other forms of genetic interactions, and there is an increased interest in using marker annotations in genome-wide prediction and association analyses. In this paper, we discuss a hybrid modeling method which combines parametric mixed modeling and non-parametric rule ensembles. RESULTS: This approach gives us a flexible class of models that can be used to capture additive, locally epistatic genetic effects, gene-by-background interactions and allows us to incorporate one or more annotations into the genomic selection or association models. We use benchmark datasets that cover a range of organisms and traits in addition to simulated datasets to illustrate the strengths of this approach. CONCLUSIONS: In this paper, we describe a new strategy for incorporating genetic interactions into genomic prediction and association models. This strategy results in accurate models, with sometimes significantly higher accuracies than that of a standard additive model.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Epistasia Genética / Estudo de Associação Genômica Ampla / Modelos Genéticos Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Animals Idioma: En Revista: Genet Sel Evol Assunto da revista: BIOLOGIA / GENETICA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Epistasia Genética / Estudo de Associação Genômica Ampla / Modelos Genéticos Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Animals Idioma: En Revista: Genet Sel Evol Assunto da revista: BIOLOGIA / GENETICA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos