Radiation-Induced Damage and Recovery of Ultra-Nanocrystalline Diamond: Toward Applications in Harsh Environments.
ACS Appl Mater Interfaces
; 9(45): 39790-39794, 2017 Nov 15.
Article
em En
| MEDLINE
| ID: mdl-29058873
Ultra-nanocrystalline diamond (UNCD) is increasingly being used in the fabrication of devices and coatings due to its excellent tribological properties, corrosion resistance, and biocompatibility. Here, we study its response to irradiation with kiloelectronvolt electrons as a controlled model for extreme ionizing environments. Real time Raman spectroscopy reveals that the radiation-damage mechanism entails dehydrogenation of UNCD grain boundaries, and we show that the damage can be recovered by annealing at 883 K. Our results have significant practical implications for the implementation of UNCD in extreme environment applications, and indicate that the films can be used as radiation sensors.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
ACS Appl Mater Interfaces
Assunto da revista:
BIOTECNOLOGIA
/
ENGENHARIA BIOMEDICA
Ano de publicação:
2017
Tipo de documento:
Article
País de afiliação:
Estados Unidos