Your browser doesn't support javascript.
loading
A spiral-based volumetric acquisition for MR temperature imaging.
Fielden, Samuel W; Feng, Xue; Zhao, Li; Miller, G Wilson; Geeslin, Matthew; Dallapiazza, Robert F; Elias, W Jeffrey; Wintermark, Max; Butts Pauly, Kim; Meyer, Craig H.
Afiliação
  • Fielden SW; Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.
  • Feng X; Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.
  • Zhao L; Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.
  • Miller GW; Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA.
  • Geeslin M; Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA.
  • Dallapiazza RF; Department of Neurosurgery, University of Virginia, Charlottesville, Virginia, USA.
  • Elias WJ; Department of Neurosurgery, University of Virginia, Charlottesville, Virginia, USA.
  • Wintermark M; Department of Radiology, Stanford University, Palo Alto, California, USA.
  • Butts Pauly K; Department of Radiology, Stanford University, Palo Alto, California, USA.
  • Meyer CH; Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.
Magn Reson Med ; 79(6): 3122-3127, 2018 06.
Article em En | MEDLINE | ID: mdl-29115692
PURPOSE: To develop a rapid pulse sequence for volumetric MR thermometry. METHODS: Simulations were carried out to assess temperature deviation, focal spot distortion/blurring, and focal spot shift across a range of readout durations and maximum temperatures for Cartesian, spiral-out, and retraced spiral-in/out (RIO) trajectories. The RIO trajectory was applied for stack-of-spirals 3D imaging on a real-time imaging platform and preliminary evaluation was carried out compared to a standard 2D sequence in vivo using a swine brain model, comparing maximum and mean temperatures measured between the two methods, as well as the temporal standard deviation measured by the two methods. RESULTS: In simulations, low-bandwidth Cartesian trajectories showed substantial shift of the focal spot, whereas both spiral trajectories showed no shift while maintaining focal spot geometry. In vivo, the 3D sequence achieved real-time 4D monitoring of thermometry, with an update time of 2.9-3.3 s. CONCLUSION: Spiral imaging, and RIO imaging in particular, is an effective way to speed up volumetric MR thermometry. Magn Reson Med 79:3122-3127, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Imageamento por Ressonância Magnética / Termometria Limite: Animals Idioma: En Revista: Magn Reson Med Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Imageamento por Ressonância Magnética / Termometria Limite: Animals Idioma: En Revista: Magn Reson Med Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos