Your browser doesn't support javascript.
loading
Enhanced Immunological Tolerance by HLA-G1 from Neural Progenitor Cells (NPCs) Derived from Human Embryonic Stem Cells (hESCs).
Zhao, Hong-Xi; Jiang, Feng; Zhu, Ya-Jing; Wang, Li; Li, Ke; Li, Yang; Wang, Xiao-Hong; Li, Ling-Song; Yao, Yuan-Qing.
Afiliação
  • Zhao HX; Department of Obstetrics and Gynecology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.
  • Jiang F; Department of Obstetrics and Gynecology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.
  • Zhu YJ; Department of Obstetrics and Gynecology, Luhe Teaching Hospital, Capital Medical University, Beijing, China.
  • Wang L; Peking University Stem Cell Research Center and China National Center for International Research, Beijing, China.
  • Li K; Peking University Stem Cell Research Center and China National Center for International Research, Beijing, China.
  • Li Y; Peking University Stem Cell Research Center and China National Center for International Research, Beijing, China.
  • Wang XH; Department of Obstetrics and Gynecology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.
  • Li LS; Peking University Stem Cell Research Center and China National Center for International Research, Beijing, China.
  • Yao YQ; Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China.
Cell Physiol Biochem ; 44(4): 1435-1444, 2017.
Article em En | MEDLINE | ID: mdl-29186714
BACKGROUND: Despite the great potential of utilizing human embryonic stem cells (hESCs)-derived cells as cell source for transplantation, these cells were often rejected during engraftment by the immune system due to adaptive immune response. METHODS: We first evaluated HLA-G expression level in both hESCs and differentiated progenitor cells. After that, we generated modified hESC lines that over-express HLA-G1 using lentiviral infection with the construct contains both HLA-G1 and GFP tag. The lentivirus was first produced by co-transfecting HLA-G1 expressing lentiviral vector together with packaging vectors into packaging cell line 293T. Then the produced virus was used for the infection of selected hESC lines. We characterized the generated cell lines phenotype, including pluripotency and self-renewal abilities, as well as immune tolerance ability by mixed lymphocyte reaction (MLR) and cytotoxicity assays. RESULTS: Although the hESCs do not express high levels of HLA-G1, over-expression of HLA-G1 in hESCs still retains their stem cell characteristics as determined by retaining the expression levels of OCT4 and SOX2, two critical transcriptional factors for stem cell function. Furthermore, the HLA-G1 overexpressing hESCs retain the self-renewal and pluripotency characteristics of stem cells, which can differentiate into different types of cells, including pigment cells, smooth muscle cells, epithelia-like cells, and NPCs. After differentiation, the differentiated cells including NPCs retain the high levels of HLA-G1 protein. In comparison with conventional NPCs, these HLA-G1 positive NPCs have enhanced immune tolerance ability. CONCLUSIONS: Ectopic expression of HLA-G1, a non-classical major histocompatibility complex class I (MHC I) antigen that was originally discovered involving in engraftment tolerance during pregnancy, can enhance the immunological tolerance in differentiated neural progenitor cells (NPCs). Our study shows that stably overexpressing HLA-G1 in hESCs might be a feasible strategy for enhancing the engraftment of NPCs during transplantation.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Células-Tronco Neurais / Antígenos HLA-G / Tolerância Imunológica Limite: Humans Idioma: En Revista: Cell Physiol Biochem Assunto da revista: BIOQUIMICA / FARMACOLOGIA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Células-Tronco Neurais / Antígenos HLA-G / Tolerância Imunológica Limite: Humans Idioma: En Revista: Cell Physiol Biochem Assunto da revista: BIOQUIMICA / FARMACOLOGIA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: China