Your browser doesn't support javascript.
loading
GIMDA: Graphlet interaction-based MiRNA-disease association prediction.
Chen, Xing; Guan, Na-Na; Li, Jian-Qiang; Yan, Gui-Ying.
Afiliação
  • Chen X; School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China.
  • Guan NN; College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China.
  • Li JQ; College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China.
  • Yan GY; Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China.
J Cell Mol Med ; 22(3): 1548-1561, 2018 03.
Article em En | MEDLINE | ID: mdl-29272076
MicroRNAs (miRNAs) have been confirmed to be closely related to various human complex diseases by many experimental studies. It is necessary and valuable to develop powerful and effective computational models to predict potential associations between miRNAs and diseases. In this work, we presented a prediction model of Graphlet Interaction for MiRNA-Disease Association prediction (GIMDA) by integrating the disease semantic similarity, miRNA functional similarity, Gaussian interaction profile kernel similarity and the experimentally confirmed miRNA-disease associations. The related score of a miRNA to a disease was calculated by measuring the graphlet interactions between two miRNAs or two diseases. The novelty of GIMDA lies in that we used graphlet interaction to analyse the complex relationships between two nodes in a graph. The AUCs of GIMDA in global and local leave-one-out cross-validation (LOOCV) turned out to be 0.9006 and 0.8455, respectively. The average result of five-fold cross-validation reached to 0.8927 ± 0.0012. In case study for colon neoplasms, kidney neoplasms and prostate neoplasms based on the database of HMDD V2.0, 45, 45, 41 of the top 50 potential miRNAs predicted by GIMDA were validated by dbDEMC and miR2Disease. Additionally, in the case study of new diseases without any known associated miRNAs and the case study of predicting potential miRNA-disease associations using HMDD V1.0, there were also high percentages of top 50 miRNAs verified by the experimental literatures.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias da Próstata / Regulação Neoplásica da Expressão Gênica / Modelos Estatísticos / Neoplasias do Colo / Predisposição Genética para Doença / MicroRNAs / Neoplasias Renais Tipo de estudo: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Limite: Aged / Humans / Male / Middle aged Idioma: En Revista: J Cell Mol Med Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2018 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias da Próstata / Regulação Neoplásica da Expressão Gênica / Modelos Estatísticos / Neoplasias do Colo / Predisposição Genética para Doença / MicroRNAs / Neoplasias Renais Tipo de estudo: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Limite: Aged / Humans / Male / Middle aged Idioma: En Revista: J Cell Mol Med Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2018 Tipo de documento: Article País de afiliação: China