Your browser doesn't support javascript.
loading
Strigolactones positively regulate chilling tolerance in pea and in Arabidopsis.
Cooper, James W; Hu, Yan; Beyyoudh, Leila; Yildiz Dasgan, H; Kunert, Karl; Beveridge, Christine A; Foyer, Christine H.
Afiliação
  • Cooper JW; Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK.
  • Hu Y; Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK.
  • Beyyoudh L; Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK.
  • Yildiz Dasgan H; Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK.
  • Kunert K; Department of Horticulture, Agricultural Faculty, Cukurova University, Adana, 01330, Turkey.
  • Beveridge CA; Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK.
  • Foyer CH; Forestry and Agricultural Biotechnology Institute, Department Plant and Soil Sciences, University of Pretoria, Hillcrest, Pretoria, 0002, South Africa.
Plant Cell Environ ; 41(6): 1298-1310, 2018 06.
Article em En | MEDLINE | ID: mdl-29341173
ABSTRACT
Strigolactones (SL) fulfil important roles in plant development and stress tolerance. Here, we characterized the role of SL in the dark chilling tolerance of pea and Arabidopsis by analysis of mutants that are defective in either SL synthesis or signalling. Pea mutants (rms3, rms4, and rms5) had significantly greater shoot branching with higher leaf chlorophyll a/b ratios and carotenoid contents than the wild type. Exposure to dark chilling significantly decreased shoot fresh weights but increased leaf numbers in all lines. Moreover, dark chilling treatments decreased biomass (dry weight) accumulation only in rms3 and rms5 shoots. Unlike the wild type plants, chilling-induced inhibition of photosynthetic carbon assimilation was observed in the rms lines and also in the Arabidopsis max3-9, max4-1, and max2-1 mutants that are defective in SL synthesis or signalling. When grown on agar plates, the max mutant rosettes accumulated less biomass than the wild type. The synthetic SL, GR24, decreased leaf area in the wild type, max3-9, and max4-1 mutants but not in max2-1 in the absence of stress. In addition, a chilling-induced decrease in leaf area was observed in all the lines in the presence of GR24. We conclude that SL plays an important role in the control of dark chilling tolerance.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Adaptação Fisiológica / Arabidopsis / Temperatura Baixa / Pisum sativum / Lactonas Idioma: En Revista: Plant Cell Environ Assunto da revista: BOTANICA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Adaptação Fisiológica / Arabidopsis / Temperatura Baixa / Pisum sativum / Lactonas Idioma: En Revista: Plant Cell Environ Assunto da revista: BOTANICA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Reino Unido