Your browser doesn't support javascript.
loading
Optogenetics-Inspired Tunable Synaptic Functions in Memristors.
Zhu, Xiaojian; Lu, Wei D.
Afiliação
  • Zhu X; Department of Electrical Engineering and Computer Science, The University of Michigan , Ann Arbor, Michigan 48109, United States.
  • Lu WD; Department of Electrical Engineering and Computer Science, The University of Michigan , Ann Arbor, Michigan 48109, United States.
ACS Nano ; 12(2): 1242-1249, 2018 02 27.
Article em En | MEDLINE | ID: mdl-29357245
ABSTRACT
Two-terminal memristors with internal Ca2+-like dynamics can be used to faithfully emulate biological synaptic functions and have been intensively studied for neural network implementations. Inspired by the optogenetic technique that utilizes light to tune the Ca2+ dynamics and subsequently the synaptic plasticity, we develop a CH3NH3PbI3 (MAPbI3)-based memristor that exhibits light-tunable synaptic behaviors. Specifically, we show that by increasing the formation energy of iodine vacancy (VI·/VI×), light illumination can be used to control the VI·/VI× generation and annihilation dynamics, resembling light-controlled Ca2+ influx in biological synapses. We demonstrate that the memory formation and memory loss behaviors in the memristors can be modified by controlling the intensity and the wavelength of the illuminated light. Coincidence detection of electrical and light stimulations is also implemented in the memristive device with real-time (≤20 ms) response to light illumination. These results open options to modify the synaptic plasticity effects in memristor-based neuromorphic systems and can lead to the development of electronic systems that can faithfully emulate diverse biological processes.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Nano Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Nano Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos