Your browser doesn't support javascript.
loading
The existence of fertile hybrids of closely related model earthworm species, Eisenia andrei and E. fetida.
Plytycz, Barbara; Bigaj, Janusz; Osikowski, Artur; Hofman, Sebastian; Falniowski, Andrzej; Panz, Tomasz; Grzmil, Pawel; Vandenbulcke, Franck.
Afiliação
  • Plytycz B; Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland.
  • Bigaj J; Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland.
  • Osikowski A; Department of Animal Anatomy, University of Agriculture in Krakow, Krakow, Poland.
  • Hofman S; Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland.
  • Falniowski A; Department of Malacology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland.
  • Panz T; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
  • Grzmil P; Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland.
  • Vandenbulcke F; Ecologie Numerique et Ecotoxicologie, University Lille Nord de France, Lille, France.
PLoS One ; 13(1): e0191711, 2018.
Article em En | MEDLINE | ID: mdl-29370238
Lumbricid earthworms Eisenia andrei (Ea) and E. fetida (Ef) are simultaneous hermaphrodites with reciprocal insemination capable of self-fertilization while the existence of hybridization of these two species was still debatable. During the present investigation fertile hybrids of Ea and Ef were detected. Virgin specimens of Ea and Ef were laboratory crossed (Ea+Ef) and their progeny was doubly identified. 1 -identified by species-specific maternally derived haploid mitochondrial DNA sequences of the COI gene being either 'a' for worms hatched from Ea ova or 'f' for worms hatched from Ef ova. 2 -identified by the diploid maternal/paternal nuclear DNA sequences of 28s rRNA gene being either 'AA' for Ea, 'FF' for Ef, or AF/FA for their hybrids derived either from the 'aA' or 'fF' ova, respectively. Among offspring of Ea+Ef pairs in F1 generation there were mainly aAA and fFF earthworms resulted from the facilitated self-fertilization and some aAF hybrids from aA ova but none fFA hybrids from fF ova. In F2 generation resulting from aAF hybrids mated with aAA a new generations of aAA and aAF hybrids were noticed, while aAF hybrids mated with fFF gave fFF and both aAF and fFA hybrids. Hybrids intercrossed together produced plenty of cocoons but no hatchlings independently whether aAF+aAF or aAF+fFA were mated. These results indicated that Ea and Ef species, easy to maintain in laboratory and commonly used as convenient models in biomedicine and ecotoxicology, may also serve in studies on molecular basis of interspecific barriers and mechanisms of introgression and speciation. Hypothetically, their asymmetrical hybridization can be modified by some external factors.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oligoquetos / Fertilidade / Hibridização Genética Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Polônia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oligoquetos / Fertilidade / Hibridização Genética Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Polônia