Your browser doesn't support javascript.
loading
Subtractive fabrication of ferroelectric thin films with precisely controlled thickness.
Ievlev, Anton V; Chyasnavichyus, Marius; Leonard, Donovan N; Agar, Joshua C; Velarde, Gabriel A; Martin, Lane W; Kalinin, Sergei V; Maksymovych, Petro; Ovchinnikova, Olga S.
Afiliação
  • Ievlev AV; The Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN 37831, United States of America. Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN 37831, United States of America.
Nanotechnology ; 29(15): 155302, 2018 Apr 02.
Article em En | MEDLINE | ID: mdl-29393062
ABSTRACT
The ability to control thin-film growth has led to advances in our understanding of fundamental physics as well as to the emergence of novel technologies. However, common thin-film growth techniques introduce a number of limitations related to the concentration of defects on film interfaces and surfaces that limit the scope of systems that can be produced and studied experimentally. Here, we developed an ion-beam based subtractive fabrication process that enables creation and modification of thin films with pre-defined thicknesses. To accomplish this we transformed a multimodal imaging platform that combines time-of-flight secondary ion mass spectrometry with atomic force microscopy to a unique fabrication tool that allows for precise sputtering of the nanometer-thin layers of material. To demonstrate fabrication of thin-films with in situ feedback and control on film thickness and functionality we systematically studied thickness dependence of ferroelectric switching of lead-zirconate-titanate, within a single epitaxial film. Our results demonstrate that through a subtractive film fabrication process we can control the piezoelectric response as a function of film thickness as well as improve on the overall piezoelectric response versus an untreated film.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanotechnology Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanotechnology Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos