Your browser doesn't support javascript.
loading
Studying light-harvesting models with superconducting circuits.
Potocnik, Anton; Bargerbos, Arno; Schröder, Florian A Y N; Khan, Saeed A; Collodo, Michele C; Gasparinetti, Simone; Salathé, Yves; Creatore, Celestino; Eichler, Christopher; Türeci, Hakan E; Chin, Alex W; Wallraff, Andreas.
Afiliação
  • Potocnik A; Department of Physics, ETH Zurich, CH-8093, Zürich, Switzerland. anton.potocnik@phys.ethz.ch.
  • Bargerbos A; Department of Physics, ETH Zurich, CH-8093, Zürich, Switzerland.
  • Schröder FAYN; Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, UK.
  • Khan SA; Department of Electrical Engineering, Princeton University, Princeton, NJ, 08544, USA.
  • Collodo MC; Department of Physics, ETH Zurich, CH-8093, Zürich, Switzerland.
  • Gasparinetti S; Department of Physics, ETH Zurich, CH-8093, Zürich, Switzerland.
  • Salathé Y; Department of Physics, ETH Zurich, CH-8093, Zürich, Switzerland.
  • Creatore C; Department of Physics, ETH Zurich, CH-8093, Zürich, Switzerland.
  • Eichler C; Department of Physics, ETH Zurich, CH-8093, Zürich, Switzerland.
  • Türeci HE; Department of Electrical Engineering, Princeton University, Princeton, NJ, 08544, USA.
  • Chin AW; Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, UK.
  • Wallraff A; Department of Physics, ETH Zurich, CH-8093, Zürich, Switzerland.
Nat Commun ; 9(1): 904, 2018 03 02.
Article em En | MEDLINE | ID: mdl-29500345
ABSTRACT
The process of photosynthesis, the main source of energy in the living world, converts sunlight into chemical energy. The high efficiency of this process is believed to be enabled by an interplay between the quantum nature of molecular structures in photosynthetic complexes and their interaction with the environment. Investigating these effects in biological samples is challenging due to their complex and disordered structure. Here we experimentally demonstrate a technique for studying photosynthetic models based on superconducting quantum circuits, which complements existing experimental, theoretical, and computational approaches. We demonstrate a high degree of freedom in design and experimental control of our approach based on a simplified three-site model of a pigment protein complex with realistic parameters scaled down in energy by a factor of 105. We show that the excitation transport between quantum-coherent sites disordered in energy can be enabled through the interaction with environmental noise. We also show that the efficiency of the process is maximized for structured noise resembling intramolecular phononic environments found in photosynthetic complexes.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Modelos Moleculares / Complexos de Proteínas Captadores de Luz / Supercondutividade Tipo de estudo: Prognostic_studies Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Modelos Moleculares / Complexos de Proteínas Captadores de Luz / Supercondutividade Tipo de estudo: Prognostic_studies Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Suíça