TERIUS: accurate prediction of lncRNA via high-throughput sequencing data representing RNA-binding protein association.
BMC Bioinformatics
; 19(Suppl 1): 41, 2018 02 19.
Article
em En
| MEDLINE
| ID: mdl-29504902
BACKGROUND: LncRNAs are long regulatory non-coding RNAs, some of which are arguably predicted to have coding potential. Despite coding potential classifiers that utilize ribosome profiling data successfully detected actively translated regions, they are less sensitive to lncRNAs. Furthermore, lncRNA annotation can be susceptible to false positives obtained from 3' untranslated region (UTR) fragments of mRNAs. RESULTS: To lower these limitations in lncRNA annotation, we present a novel tool TERIUS that provides a two-step filtration process to distinguish between bona fide and false lncRNAs. The first step successfully separates lncRNAs from protein-coding genes showing enhanced sensitivity compared to other methods. To eliminate 3'UTR fragments, the second step takes advantage of the 3'UTR-specific association with regulator of nonsense transcripts 1 (UPF1), leading to refined lncRNA annotation. Importantly, TERIUS enabled the detection of misclassified transcripts in published lncRNA annotations. CONCLUSIONS: TERIUS is a robust method for lncRNA annotation, which provides an additional filtration step for 3'UTR fragments. TERIUS was able to successfully re-classify GENCODE and miTranscriptome lncRNA annotations. We believe that TERIUS can benefit construction of extensive and accurate non-coding transcriptome maps in many genomes.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Software
/
Análise de Sequência de RNA
/
Sequenciamento de Nucleotídeos em Larga Escala
/
Anotação de Sequência Molecular
/
RNA Longo não Codificante
Tipo de estudo:
Prognostic_studies
/
Risk_factors_studies
Limite:
Animals
/
Humans
Idioma:
En
Revista:
BMC Bioinformatics
Assunto da revista:
INFORMATICA MEDICA
Ano de publicação:
2018
Tipo de documento:
Article