Your browser doesn't support javascript.
loading
Atlantic salmon (Salmo salar) co-product-derived protein hydrolysates: A source of antidiabetic peptides.
Harnedy, Pádraigín A; Parthsarathy, Vadivel; McLaughlin, Chris M; O'Keeffe, Martina B; Allsopp, Philip J; McSorley, Emeir M; O'Harte, Finbarr P M; FitzGerald, Richard J.
Afiliação
  • Harnedy PA; Department of Biological Sciences, University of Limerick, Limerick, Ireland. Electronic address: Padraigin.Harnedy@ul.ie.
  • Parthsarathy V; The SAAD Centre for Pharmacy & Diabetes, School of Biomedical Sciences, Ulster University, Coleraine, Co. Derry BT52 1SA, Northern Ireland. Electronic address: V.Parthsarathy@derby.ac.uk.
  • McLaughlin CM; The SAAD Centre for Pharmacy & Diabetes, School of Biomedical Sciences, Ulster University, Coleraine, Co. Derry BT52 1SA, Northern Ireland. Electronic address: McLaughlin-C30@email.ulster.ac.uk.
  • O'Keeffe MB; Department of Biological Sciences, University of Limerick, Limerick, Ireland. Electronic address: Martina.OKeeffe@ul.ie.
  • Allsopp PJ; Northern Ireland Centre for Food and Health, School of Biomedical Sciences, Ulster University, Coleraine, Co. Derry BT52 1SA, Northern Ireland. Electronic address: pj.allsopp@ulster.ac.uk.
  • McSorley EM; Northern Ireland Centre for Food and Health, School of Biomedical Sciences, Ulster University, Coleraine, Co. Derry BT52 1SA, Northern Ireland. Electronic address: em.mcsorley@ulster.ac.uk.
  • O'Harte FPM; The SAAD Centre for Pharmacy & Diabetes, School of Biomedical Sciences, Ulster University, Coleraine, Co. Derry BT52 1SA, Northern Ireland. Electronic address: fpm.oharte@ulster.ac.uk.
  • FitzGerald RJ; Department of Biological Sciences, University of Limerick, Limerick, Ireland. Electronic address: dick.fitzgerald@ul.ie.
Food Res Int ; 106: 598-606, 2018 04.
Article em En | MEDLINE | ID: mdl-29579965
Large quantities of low-value protein rich co-products, such as salmon skin and trimmings, are generated annually. These co-products can be upgraded to high-value functional ingredients. The aim of this study was to assess the antidiabetic potential of salmon skin gelatin and trimmings-derived protein hydrolysates in vitro. The gelatin hydrolysate generated with Alcalase 2.4L and Flavourzyme 500L exhibited significantly higher (p < 0.001) insulin and GLP-1 secretory activity from pancreatic BRIN-BD11 and enteroendocrine GLUTag cells, respectively, when tested at 2.5 mg/mL compared to hydrolysates generated with Alcalase 2.4L or Promod 144MG. The gelatin hydrolysate generated with Alcalase 2.4L and Flavourzyme 500L showed significantly more potent (p < 0.01) DPP-IV inhibitory activity than those generated with Alcalase 2.4L or Promod 144MG. No significant difference was observed in the insulinotropic activity mediated by any of the trimmings-derived hydrolysates when tested at 2.5 mg/mL. However, the trimmings hydrolysate generated with Alcalase 2.4L and Flavourzyme 500L exhibited significantly higher DPP-IV inhibitory (p < 0.05:Alcalase 2.4L and p < 0.01:Promod 144MG) and GLP-1 (p < 0.001, 2.5 mg/mL) secretory activity than those generated with Alcalase 2.4L or Promod 144MG. The salmon trimmings hydrolysate generated with Alcalase 2.4L and Flavourzyme 500L when subjected to simulated gastrointestinal digestion (SGID) was shown to retain its GLP-1 secretory and DPP-IV inhibitory activities, in addition to improving its insulin secretory activity. However, the gelatin hydrolysate generated with Alcalase 2.4L and Flavourzyme 500L was shown to lose GLP-1 secretory activity following SGID. A significant increase in membrane potential (p < 0.001) and intracellular calcium (p < 0.001) by both co-product hydrolysates generated with Alcalase 2.4L and Flavourzyme 500L suggest that both hydrolysates mediate their insulinotropic activity through the KATP channel-dependent pathway. Additionally, by stimulating a significant increase in intracellular cAMP release (p < 0.05) it is likely that the trimmings-derived hydrolysate may also mediate insulin secretion through the protein kinase A pathway. The results presented herein demonstrate that salmon co-product hydrolysates exhibit promising in vitro antidiabetic activity.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peptídeos / Hidrolisados de Proteína / Alimentos Marinhos / Células Enteroendócrinas / Salmo salar / Proteínas de Peixes / Células Secretoras de Insulina / Manipulação de Alimentos / Gelatina / Hipoglicemiantes Limite: Animals / Humans Idioma: En Revista: Food Res Int Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peptídeos / Hidrolisados de Proteína / Alimentos Marinhos / Células Enteroendócrinas / Salmo salar / Proteínas de Peixes / Células Secretoras de Insulina / Manipulação de Alimentos / Gelatina / Hipoglicemiantes Limite: Animals / Humans Idioma: En Revista: Food Res Int Ano de publicação: 2018 Tipo de documento: Article