Your browser doesn't support javascript.
loading
Myristoylated methionine sulfoxide reductase A is a late endosomal protein.
Lim, Jung Mi; Lim, Jung Chae; Kim, Geumsoo; Levine, Rodney L.
Afiliação
  • Lim JM; Laboratory of Biochemistry, NHLBI, National Institutes of Health, Bethesda, Maryland 20892.
  • Lim JC; Laboratory of Biochemistry, NHLBI, National Institutes of Health, Bethesda, Maryland 20892.
  • Kim G; Laboratory of Biochemistry, NHLBI, National Institutes of Health, Bethesda, Maryland 20892.
  • Levine RL; Laboratory of Biochemistry, NHLBI, National Institutes of Health, Bethesda, Maryland 20892. Electronic address: rlevine@nih.gov.
J Biol Chem ; 293(19): 7355-7366, 2018 05 11.
Article em En | MEDLINE | ID: mdl-29593096
ABSTRACT
Methionine residues in proteins provide antioxidant defense by reacting with oxidizing species, which oxidize methionine to methionine sulfoxide. Reduction of the sulfoxide back to methionine is catalyzed by methionine sulfoxide reductases, essential for protection against oxidative stress. The nonmyristoylated form of methionine sulfoxide reductase A (MSRA) is present in mitochondria, whereas the myristoylated form has been previously reported to be cytosolic. Despite the importance of MSRA in antioxidant defense, its in vivo binding partners and substrates have not been identified. Starting with a protein array, and followed by immunoprecipitation experiments, colocalization studies, and subcellular fractionation, we identified the late endosomal protein, StAR-related lipid transfer domain-containing 3 (STARD3), as a binding partner of myristoylated MSRA, but not of nonmyristoylated MSRA. STARD3 is known to have both membrane-binding and cytosolic domains that are important in STARD3-mediated transport of cholesterol from the endoplasmic reticulum to the endosome. We found that the STARD3 cytosolic domain localizes MSRA to the late endosome. We propose that the previous conclusion that myristoylated MSRA is strictly a cytosolic protein is artifactual and likely due to vigorous overexpression of MSRA. We conclude that myristoylated MSRA is a late endosomal protein that may play a role in lipid metabolism or may protect endosomal proteins from oxidative damage.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Endossomos / Proteínas de Transporte / Ácido Mirístico / Metionina Sulfóxido Redutases / Proteínas de Membrana Limite: Animals / Humans Idioma: En Revista: J Biol Chem Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Endossomos / Proteínas de Transporte / Ácido Mirístico / Metionina Sulfóxido Redutases / Proteínas de Membrana Limite: Animals / Humans Idioma: En Revista: J Biol Chem Ano de publicação: 2018 Tipo de documento: Article