Your browser doesn't support javascript.
loading
Principles that govern competition or co-existence in Rho-GTPase driven polarization.
Chiou, Jian-Geng; Ramirez, Samuel A; Elston, Timothy C; Witelski, Thomas P; Schaeffer, David G; Lew, Daniel J.
Afiliação
  • Chiou JG; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America.
  • Ramirez SA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.
  • Elston TC; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.
  • Witelski TP; Department of Mathematics, Duke University, Durham, North Carolina, United States of America.
  • Schaeffer DG; Department of Mathematics, Duke University, Durham, North Carolina, United States of America.
  • Lew DJ; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America.
PLoS Comput Biol ; 14(4): e1006095, 2018 04.
Article em En | MEDLINE | ID: mdl-29649212
ABSTRACT
Rho-GTPases are master regulators of polarity establishment and cell morphology. Positive feedback enables concentration of Rho-GTPases into clusters at the cell cortex, from where they regulate the cytoskeleton. Different cell types reproducibly generate either one (e.g. the front of a migrating cell) or several clusters (e.g. the multiple dendrites of a neuron), but the mechanistic basis for unipolar or multipolar outcomes is unclear. The design principles of Rho-GTPase circuits are captured by two-component reaction-diffusion models based on conserved aspects of Rho-GTPase biochemistry. Some such models display rapid winner-takes-all competition between clusters, yielding a unipolar outcome. Other models allow prolonged co-existence of clusters. We investigate the behavior of a simple class of models and show that while the timescale of competition varies enormously depending on model parameters, a single factor explains a large majority of this variation. The dominant factor concerns the degree to which the maximal active GTPase concentration in a cluster approaches a "saturation point" determined by model parameters. We suggest that both saturation and the effect of saturation on competition reflect fundamental properties of the Rho-GTPase polarity machinery, regardless of the specific feedback mechanism, which predict whether the system will generate unipolar or multipolar outcomes.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polaridade Celular / Proteínas rho de Ligação ao GTP / Modelos Biológicos Tipo de estudo: Prognostic_studies Idioma: En Revista: PLoS Comput Biol Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polaridade Celular / Proteínas rho de Ligação ao GTP / Modelos Biológicos Tipo de estudo: Prognostic_studies Idioma: En Revista: PLoS Comput Biol Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos