Your browser doesn't support javascript.
loading
Enhanced PKMT-substrate recognition through non active-site interactions.
Kublanovsky, Margarita; Aharoni, Amir; Levy, Dan.
Afiliação
  • Kublanovsky M; The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel; The National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel.
  • Aharoni A; The National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel; Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel. Electronic address: aaharoni@bgu.ac.il.
  • Levy D; The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel; The National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel. Electronic address: ledan@post.bgu.ac.il.
Biochem Biophys Res Commun ; 501(4): 1029-1033, 2018 07 02.
Article em En | MEDLINE | ID: mdl-29778536
ABSTRACT
Protein lysine methyltransferases (PKMTs) catalyze the methylation of lysine residues on many different cellular proteins. Despite extensive biochemical and structural studies, focusing on PKMT active site-peptide interactions, little is known regarding how PKMTs recognize globular substrates. To examine whether these enzymes recognize protein substrates through interactions that take place outside of the active site, we have measured SETD6 and SETD7 activity with both protein and peptide RelA substrate. We have utilized the MTase-Glo™ methyltransferase assay to measure the activity of SETD6 and SETD7 with the different RelA substrates and calculated the Michaelis-Menten (MM) parameters. We found an up to ∼12-fold increase in KM of the PKMTs activity with RelA peptide relative to the respective full-length protein, emphasizing the significantly higher PKMT-protein interaction affinity. Examination of SETD6 and SETD7 activity toward the same RelA substrates highlight the similarity in substrate recognition for both PKMTs. Our results show that the interaction affinity of SETD6 and SETD7 with RelA is enhanced through interactions that occur outside of the active site leading to higher catalytic efficiency and specificity. These interactions can significantly vary depending on the PKMT and the specific methylation site on RelA. Overall, our results underline that PKMTs can recognize their substrates through docking interactions that occur out of the active site-peptide region for enhancing their activity and specificity in the cellular environment.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Histona-Lisina N-Metiltransferase / Proteínas Proto-Oncogênicas c-rel Idioma: En Revista: Biochem Biophys Res Commun Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Israel

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Histona-Lisina N-Metiltransferase / Proteínas Proto-Oncogênicas c-rel Idioma: En Revista: Biochem Biophys Res Commun Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Israel