Your browser doesn't support javascript.
loading
Identifying drivers of spatial variation in occupancy with limited replication camera trap data.
Hepler, Staci A; Erhardt, Robert; Anderson, T Michael.
Afiliação
  • Hepler SA; Department of Mathematics and Statistics, Wake Forest University, Winston-Salem, North Carolina, USA.
  • Erhardt R; Center for Energy, Environment and Sustainability, Wake Forest University, Winston-Salem, North Carolina, USA.
  • Anderson TM; Department of Mathematics and Statistics, Wake Forest University, Winston-Salem, North Carolina, USA.
Ecology ; 99(10): 2152-2158, 2018 10.
Article em En | MEDLINE | ID: mdl-29901234
Occupancy models are widely used in camera trap studies to analyze species presence, abundance, and geographic distribution, among other important ecological quantities. These models account for imperfect detection using a latent variable to distinguish between true presence/absence and observed detection of a species. Under certain experimental setups, parameter estimation in a latent variable framework can be challenging. Several studies have issued guidelines on the number of independent replicated observations (surveys) needed for each unchanging occupancy field (season) to ensure reliable estimation. In this paper, we present a spatio-temporal occupancy model, and show through a simulation study that it can be fit to data obtained from a single survey per season, so long as the number of seasons is sufficiently large. We include an application using camera-trap data on the Thomson's gazelle in the Serengeti in Tanzania.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Antílopes Tipo de estudo: Prognostic_studies / Qualitative_research Limite: Animals País/Região como assunto: Africa Idioma: En Revista: Ecology Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Antílopes Tipo de estudo: Prognostic_studies / Qualitative_research Limite: Animals País/Região como assunto: Africa Idioma: En Revista: Ecology Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos