Your browser doesn't support javascript.
loading
TREX1 Mutation Causing Autosomal Dominant Thrombotic Microangiopathy and CKD-A Novel Presentation.
Gulati, Ashima; Bale, Allen E; Dykas, Daniel J; Bia, Margaret J; Danovitch, Gabriel M; Moeckel, Gilbert W; Somlo, Stefan; Dahl, Neera K.
Afiliação
  • Gulati A; Department of Internal Medicine, Division of Nephrology, Yale University School of Medicine, New Haven, CT. Electronic address: ashima.gulati@yale.edu.
  • Bale AE; Department of Genetics, Yale University School of Medicine, New Haven, CT.
  • Dykas DJ; Department of Genetics, Yale University School of Medicine, New Haven, CT.
  • Bia MJ; Department of Internal Medicine, Division of Nephrology, Yale University School of Medicine, New Haven, CT.
  • Danovitch GM; Division of Nephrology, David Geffen School of Medicine at UCLA, Los Angeles, CA.
  • Moeckel GW; Department of Pathology, Yale University School of Medicine, New Haven, CT.
  • Somlo S; Department of Internal Medicine, Division of Nephrology, Yale University School of Medicine, New Haven, CT; Department of Genetics, Yale University School of Medicine, New Haven, CT.
  • Dahl NK; Department of Internal Medicine, Division of Nephrology, Yale University School of Medicine, New Haven, CT.
Am J Kidney Dis ; 72(6): 895-899, 2018 12.
Article em En | MEDLINE | ID: mdl-29941221
ABSTRACT
Renal thrombotic microangiopathy (TMA) involves diverse causes and clinical presentations. Genetic determinants causing alternate pathway complement dysregulation underlie a substantial proportion of cases. In a significant proportion of TMAs, no defect in complement regulation is identified. Mutations in the major mammalian 3' DNA repair exonuclease 1 (TREX1) have been associated with autoimmune and cerebroretinal vasculopathy syndromes. Carboxy-terminal TREX1 mutations that result in only altered localization of the exonuclease protein with preserved catalytic function cause microangiopathy of the brain and retina, termed retinal vasculopathy and cerebral leukodystrophy (RVCL). Kidney involvement reported with RVCL usually accompanies significant brain and retinal microangiopathy. We present a pedigree with autosomal dominant renal TMA and chronic kidney disease found to have a carboxy-terminal frameshift TREX1 variant. Although symptomatic brain and retinal microangiopathy is known to associate with carboxy-terminal TREX1 mutations, this report describes a carboxy-terminal TREX1 frameshift variant causing predominant renal TMA. These findings underscore the clinical importance of recognizing TREX1 mutations as a cause of renal TMA. This case demonstrates the value of whole-exome sequencing in unsolved TMA.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fosfoproteínas / Predisposição Genética para Doença / Insuficiência Renal Crônica / Exodesoxirribonucleases / Microangiopatias Trombóticas Tipo de estudo: Diagnostic_studies / Etiology_studies / Prognostic_studies Limite: Humans / Male / Middle aged Idioma: En Revista: Am J Kidney Dis Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fosfoproteínas / Predisposição Genética para Doença / Insuficiência Renal Crônica / Exodesoxirribonucleases / Microangiopatias Trombóticas Tipo de estudo: Diagnostic_studies / Etiology_studies / Prognostic_studies Limite: Humans / Male / Middle aged Idioma: En Revista: Am J Kidney Dis Ano de publicação: 2018 Tipo de documento: Article