Your browser doesn't support javascript.
loading
Modelling performance and skeletal muscle adaptations with exponential growth functions during resistance training.
Philippe, Antony G; Borrani, Fabio; Sanchez, Anthony Mj; Py, Guillaume; Candau, Robin.
Afiliação
  • Philippe AG; a INRA, UMR866 Dynamique Musculaire et Métabolisme , University of Montpellier , Montpellier , France.
  • Borrani F; b Institute of Sport Sciences of University of Lausanne (ISSUL), faculty of biology and medicine , University of Lausanne , Lausanne , Switzerland.
  • Sanchez AM; c Department of Sports Sciences, Laboratoire Européen Performance Santé Altitude, EA4604 , University of Perpignan Via Domitia , Font-Romeu , France.
  • Py G; a INRA, UMR866 Dynamique Musculaire et Métabolisme , University of Montpellier , Montpellier , France.
  • Candau R; a INRA, UMR866 Dynamique Musculaire et Métabolisme , University of Montpellier , Montpellier , France.
J Sports Sci ; 37(3): 254-261, 2019 Feb.
Article em En | MEDLINE | ID: mdl-29972090
ABSTRACT
System theory is classically applied to describe and to predict the effects of training load on performance. The classic models are structured by impulse-type transfer functions, nevertheless, most biological adaptations display exponential growth kinetics. The aim of this study was to propose an extension of the model structure taking into account the exponential nature of skeletal muscle adaptations by using a genetic algorithm. Thus, the conventional impulse-type model was applied in 15 resistance trained rodents and compared with exponential growth-type models. Even if we obtained a significant correlation between actual and modelled performances for all the models, our data indicated that an exponential model is associated with more suitable parameters values, especially the time constants that correspond to the positive response to training. Moreover, positive adaptations predicted with an exponential component showed a strong correlation with the main structural adaptations examined in skeletal muscles, i.e. hypertrophy (R2 = 0.87, 0.96 and 0.99, for type 1, 2A and 2X cross-sectional area fibers, respectively) and changes in fiber-type composition (R2 = 0.81 and 0.79, for type 1 and 2A fibers, respectively). Thus, an exponential model succeeds to describe both performance variations with relevant time constants and physiological adaptations that take place during resistance training.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Adaptação Fisiológica / Músculo Esquelético / Treinamento Resistido / Modelos Biológicos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: J Sports Sci Ano de publicação: 2019 Tipo de documento: Article País de afiliação: França

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Adaptação Fisiológica / Músculo Esquelético / Treinamento Resistido / Modelos Biológicos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: J Sports Sci Ano de publicação: 2019 Tipo de documento: Article País de afiliação: França