Your browser doesn't support javascript.
loading
Designed trimer-mimetic TNF superfamily ligands on self-assembling nanocages.
Kih, Minwoo; Lee, Eun Jung; Lee, Na Kyeong; Kim, Yoon Kyoung; Lee, Kyung Eun; Jeong, Cherlhyun; Yang, Yoosoo; Kim, Dong-Hwee; Kim, In-San.
Afiliação
  • Kih M; KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Kor
  • Lee EJ; Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu, 41566, Republic of Ko
  • Lee NK; Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Re
  • Kim YK; KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Kor
  • Lee KE; Advanced Analysis Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
  • Jeong C; Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
  • Yang Y; Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
  • Kim DH; KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
  • Kim IS; KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Kor
Biomaterials ; 180: 67-77, 2018 10.
Article em En | MEDLINE | ID: mdl-30025246
ABSTRACT
Presentation of an endogenous bioactive ligand in its native form is a key factor in controlling and determining its bioactivity, stability, and therapeutic efficacy. In this study, we developed a novel strategy for presenting trimeric ligands on nanocages by designing, optimizing and testing based on the rational design, high-resolution structural analysis and agonistic activity assays in vitro and in vivo. We successfully designed a nanocage that presents the TNF superfamily member, TRAIL (TNF-related apoptosis-inducing ligand) in its native-like trimeric structure. The native structure of TRAIL complexes was mimicked on the resulting trimeric TRAIL-presenting nanocages (TTPNs) by inserting sufficient spacing, determined from three-dimensional structural models, to provide optimal access to the corresponding receptors. The efficacy of TTPNs as an anti-tumor agent was confirmed in preclinical studies, which revealed up to 330-fold increased affinity, 62.5-fold enhanced apoptotic activity, and improved pharmacokinetic characteristics and stability compared with the monomeric form of TRAIL (mTRAIL). In this latter context, TTPNs exhibited greater than 90% stability over 1 mo, whereas ∼50% of mTRAIL aggregated within 2 d. Consistent with their enhanced stability and ultra-high affinity for the TRAIL receptor, TTPNs effectively induced apoptosis of tumor cells in vivo, leading to effective inhibition of tumor growth. Although TRAIL was used here as a proof-of-concept, all members of the TNF superfamily share the TNF homology domain (THD) and have similar distances between ecto-domain C-termini. Thus, other TNF superfamily ligands could be genetically substituted for the TRAIL ligand on the surface of this biomimetic delivery platform.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Biomimética / Nanoestruturas / Ligante Indutor de Apoptose Relacionado a TNF Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Biomaterials Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Biomimética / Nanoestruturas / Ligante Indutor de Apoptose Relacionado a TNF Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Biomaterials Ano de publicação: 2018 Tipo de documento: Article