DrugE-Rank: Predicting Drug-Target Interactions by Learning to Rank.
Methods Mol Biol
; 1807: 195-202, 2018.
Article
em En
| MEDLINE
| ID: mdl-30030812
Identifying drug-target interactions is crucial for the success of drug discovery. Approaches based on machine learning for this problem can be divided into two types: feature-based and similarity-based methods. By utilizing the "Learning to rank" framework, we propose a new method, DrugE-Rank, to combine these two different types of methods for improving the prediction performance of new candidate drugs and targets. DrugE-Rank is available at http://datamining-iip.fudan.edu.cn/service/DrugE-Rank/ .
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Algoritmos
/
Interações Medicamentosas
Tipo de estudo:
Prognostic_studies
/
Risk_factors_studies
País/Região como assunto:
America do norte
Idioma:
En
Revista:
Methods Mol Biol
Assunto da revista:
BIOLOGIA MOLECULAR
Ano de publicação:
2018
Tipo de documento:
Article
País de afiliação:
China