Your browser doesn't support javascript.
loading
Direct measurement of the sound velocity in seawater based on the pulsed acousto-optic effect between the frequency comb and the ultrasonic pulse.
Opt Express ; 26(17): 21849-21860, 2018 Aug 20.
Article em En | MEDLINE | ID: mdl-30130888
ABSTRACT
We present a new method to measure the velocity of sound in pure water and seawater using the Raman-Nath diffraction caused by acousto-optic effect between the optical frequency comb and the ultrasonic pulse. In the Mach-Zehnder interferometry system we established, the measurement and reference arms are tagged with sharp negative pulses caused by the pulsed ultrasound passing through them. The difference in optical path between the two parallel beams is twice the flight distance of the ultrasonic waves. The span between the two negative pulses reflects the time interval. At the same time, the distance between the two arms can be measured precisely using the femtosecond laser interferometry. Consequently, the time interval and the distance can be used to measure the sound velocity. The experimental results show that, the uncertainty of the sound speed measurement can achieve 0.03m/s@1482m/s in pure water and 0.029m/s@1527m/s in seawater, respectively, compared with the commercial sound velocity profiler (SVP). More importantly, benefiting from the faster and cleaner response of the acousto-optic effect than the piezoelectric effect which is widely adopted in direct sound velocity measurement method, our method provides a new idea for the metrology of sound velocity in seawater.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Opt Express Assunto da revista: OFTALMOLOGIA Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Opt Express Assunto da revista: OFTALMOLOGIA Ano de publicação: 2018 Tipo de documento: Article