Your browser doesn't support javascript.
loading
Metal-insulator-transition engineering by modulation tilt-control in perovskite nickelates for room temperature optical switching.
Liao, Zhaoliang; Gauquelin, Nicolas; Green, Robert J; Müller-Caspary, Knut; Lobato, Ivan; Li, Lin; Van Aert, Sandra; Verbeeck, Johan; Huijben, Mark; Grisolia, Mathieu N; Rouco, Victor; El Hage, Ralph; Villegas, Javier E; Mercy, Alain; Bibes, Manuel; Ghosez, Philippe; Sawatzky, George A; Rijnders, Guus; Koster, Gertjan.
Afiliação
  • Liao Z; MESA Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands; z.liao@utwente.nl g.koster@utwente.nl.
  • Gauquelin N; Electron Microscopy for Materials Science (EMAT), University of Antwerp, 2020 Antwerp, Belgium.
  • Green RJ; Quantum Matter Institute, University of British Columbia, Vancouver, V6T 1Z4, Canada.
  • Müller-Caspary K; Department of Physics and Astronomy, University of British Columbia, Vancouver, V6T 1Z4, Canada.
  • Lobato I; Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, S7N 5E2, Canada.
  • Li L; Electron Microscopy for Materials Science (EMAT), University of Antwerp, 2020 Antwerp, Belgium.
  • Van Aert S; Electron Microscopy for Materials Science (EMAT), University of Antwerp, 2020 Antwerp, Belgium.
  • Verbeeck J; MESA Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands.
  • Huijben M; Electron Microscopy for Materials Science (EMAT), University of Antwerp, 2020 Antwerp, Belgium.
  • Grisolia MN; Electron Microscopy for Materials Science (EMAT), University of Antwerp, 2020 Antwerp, Belgium.
  • Rouco V; MESA Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands.
  • El Hage R; Unité Mixte de Physique CNRS/Thales, Université Paris-Saclay, 91767 Palaiseau, France.
  • Villegas JE; Unité Mixte de Physique CNRS/Thales, Université Paris-Saclay, 91767 Palaiseau, France.
  • Mercy A; Unité Mixte de Physique CNRS/Thales, Université Paris-Saclay, 91767 Palaiseau, France.
  • Bibes M; Unité Mixte de Physique CNRS/Thales, Université Paris-Saclay, 91767 Palaiseau, France.
  • Ghosez P; Theoretical Materials Physics, Quantum Materials Center (Q-MAT), Complex and Entangled Systems from Atoms to Materials (CESAM), Université de Liège, B-4000 Liège, Belgium.
  • Sawatzky GA; Unité Mixte de Physique CNRS/Thales, Université Paris-Saclay, 91767 Palaiseau, France.
  • Rijnders G; Theoretical Materials Physics, Quantum Materials Center (Q-MAT), Complex and Entangled Systems from Atoms to Materials (CESAM), Université de Liège, B-4000 Liège, Belgium.
  • Koster G; Quantum Matter Institute, University of British Columbia, Vancouver, V6T 1Z4, Canada.
Proc Natl Acad Sci U S A ; 115(38): 9515-9520, 2018 09 18.
Article em En | MEDLINE | ID: mdl-30185557
ABSTRACT
In transition metal perovskites ABO3, the physical properties are largely driven by the rotations of the BO6 octahedra, which can be tuned in thin films through strain and dimensionality control. However, both approaches have fundamental and practical limitations due to discrete and indirect variations in bond angles, bond lengths, and film symmetry by using commercially available substrates. Here, we introduce modulation tilt control as an approach to tune the ground state of perovskite oxide thin films by acting explicitly on the oxygen octahedra rotation modes-that is, directly on the bond angles. By intercalating the prototype SmNiO3 target material with a tilt-control layer, we cause the system to change the natural amplitude of a given rotation mode without affecting the interactions. In contrast to strain and dimensionality engineering, our method enables a continuous fine-tuning of the materials' properties. This is achieved through two independent adjustable parameters the nature of the tilt-control material (through its symmetry, elastic constants, and oxygen rotation angles), and the relative thicknesses of the target and tilt-control materials. As a result, a magnetic and electronic phase diagram can be obtained, normally only accessible by A-site element substitution, within the single SmNiO3 compound. With this unique approach, we successfully adjusted the metal-insulator transition (MIT) to room temperature to fulfill the desired conditions for optical switching applications.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2018 Tipo de documento: Article