Your browser doesn't support javascript.
loading
Impact of hydrodynamics on iPSC-derived cardiomyocyte differentiation processes.
Samaras, Jasmin J; Abecasis, Bernardo; Serra, Margarida; Ducci, Andrea; Micheletti, Martina.
Afiliação
  • Samaras JJ; Advanced Centre for Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London, WC1E 6BT, United Kingdom. Electronic address: jasmin.samaras.10@ucl.ac.uk.
  • Abecasis B; iBET, Instituto de Biologia Experimental e Tecnológica, Av. República, Qta. do Marquês, Estação Agronómica Nacional, Edificio IBET/ITQB, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal. Electronic
  • Serra M; iBET, Instituto de Biologia Experimental e Tecnológica, Av. República, Qta. do Marquês, Estação Agronómica Nacional, Edificio IBET/ITQB, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal. Electronic
  • Ducci A; Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom. Electronic address: a.ducci@ucl.ac.uk.
  • Micheletti M; Advanced Centre for Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London, WC1E 6BT, United Kingdom. Electronic address: m.micheletti@ucl.ac.uk.
J Biotechnol ; 287: 18-27, 2018 Dec 10.
Article em En | MEDLINE | ID: mdl-30213764
Cardiomyocytes (CMs), derived from pluripotent stem cells (PSCs), have the potential to be used in cardiac repair. Addition of physical cues, such as electrical and mechanical stimulations, have proven to significantly effect morphology, density, cardiogenesis, maturity and functionality of differentiated CMs. This work combines rigorous fluid dynamics investigation and flow frequency analysis with iPSC differentiation experiments to identify and quantify the flow characteristics leading to a significant increase of differentiation yield. This is towards a better understanding of the physical relationship between frequency modulation and embryoid bodies suspension, and the development of dimensionless correlations applicable at larger scales. Laser Doppler Anemometry and Fast Fourier Transform analysis were used to identify characteristic flow frequencies under different agitation modes. Intermittent agitation resulted in a pattern of low intensity frequencies at reactor scale that could be controlled by varying three identified time components: rotational speed, interval and dwell times. A proof of concept biological study was undertaken, tuning the hydrodynamic environment through variation of dwell time based on the engineering study findings and a significant improvement in CM yield was obtained. This work introduces the concept of fine-tuning the physical hydrodynamic cues within a three-dimensional flow system to improve cardiomyocyte differentiation of iPSC.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Diferenciação Celular / Técnicas de Cultura de Células / Miócitos Cardíacos / Células-Tronco Pluripotentes Induzidas / Hidrodinâmica Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: J Biotechnol Assunto da revista: BIOTECNOLOGIA Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Diferenciação Celular / Técnicas de Cultura de Células / Miócitos Cardíacos / Células-Tronco Pluripotentes Induzidas / Hidrodinâmica Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: J Biotechnol Assunto da revista: BIOTECNOLOGIA Ano de publicação: 2018 Tipo de documento: Article