Your browser doesn't support javascript.
loading
Redox regulation of type-I inositol trisphosphate receptors in intact mammalian cells.
Joseph, Suresh K; Young, Michael P; Alzayady, Kamil; Yule, David I; Ali, Mehboob; Booth, David M; Hajnóczky, György.
Afiliação
  • Joseph SK; From the MitoCare Center, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, suresh.joseph@jefferson.edu.
  • Young MP; From the MitoCare Center, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.
  • Alzayady K; the Department of Pharmacology & Physiology, University of Rochester, Rochester, New York 14642, and.
  • Yule DI; the Department of Pharmacology & Physiology, University of Rochester, Rochester, New York 14642, and.
  • Ali M; the Center for Perinatal Research, Research Institute, Nationwide Children's Hospital, Columbus, Ohio 43205.
  • Booth DM; From the MitoCare Center, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.
  • Hajnóczky G; From the MitoCare Center, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.
J Biol Chem ; 293(45): 17464-17476, 2018 11 09.
Article em En | MEDLINE | ID: mdl-30228182
ABSTRACT
A sensitization of inositol 1,4,5-trisphosphate receptor (IP3R)-mediated Ca2+ release is associated with oxidative stress in multiple cell types. These effects are thought to be mediated by alterations in the redox state of critical thiols in the IP3R, but this has not been directly demonstrated in intact cells. Here, we utilized a combination of gel-shift assays with MPEG-maleimides and LC-MS/MS to monitor the redox state of recombinant IP3R1 expressed in HEK293 cells. We found that under basal conditions, ∼5 of the 60 cysteines are oxidized in IP3R1. Cell treatment with 50 µm thimerosal altered gel shifts, indicating oxidation of ∼20 cysteines. By contrast, the shifts induced by 0.5 mm H2O2 or other oxidants were much smaller. Monitoring of biotin-maleimide attachment to IP3R1 by LC-MS/MS with 71% coverage of the receptor sequence revealed modification of two cytosolic (Cys-292 and Cys-1415) and two intraluminal cysteines (Cys-2496 and Cys-2533) under basal conditions. The thimerosal treatment modified an additional eleven cysteines, but only three (Cys-206, Cys-767, and Cys-1459) were consistently oxidized in multiple experiments. H2O2 also oxidized Cys-206 and additionally oxidized two residues not modified by thimerosal (Cys-214 and Cys-1397). Potentiation of IP3R channel function by oxidants was measured with cysteine variants transfected into a HEK293 IP3R triple-knockout cell line, indicating that the functionally relevant redox-sensitive cysteines are predominantly clustered within the N-terminal suppressor domain of IP3R. To our knowledge, this study is the first that has used proteomic methods to assess the redox state of individual thiols in IP3R in intact cells.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Receptores de Inositol 1,4,5-Trifosfato / Peróxido de Hidrogênio Limite: Humans Idioma: En Revista: J Biol Chem Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Receptores de Inositol 1,4,5-Trifosfato / Peróxido de Hidrogênio Limite: Humans Idioma: En Revista: J Biol Chem Ano de publicação: 2018 Tipo de documento: Article