Your browser doesn't support javascript.
loading
Nuclear envelope assembly defects link mitotic errors to chromothripsis.
Liu, Shiwei; Kwon, Mijung; Mannino, Mark; Yang, Nachen; Renda, Fioranna; Khodjakov, Alexey; Pellman, David.
Afiliação
  • Liu S; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
  • Kwon M; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
  • Mannino M; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
  • Yang N; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
  • Renda F; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
  • Khodjakov A; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
  • Pellman D; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
Nature ; 561(7724): 551-555, 2018 09.
Article em En | MEDLINE | ID: mdl-30232450
Defects in the architecture or integrity of the nuclear envelope are associated with a variety of human diseases1. Micronuclei, one common nuclear aberration, are an origin for chromothripsis2, a catastrophic mutational process that is commonly observed in cancer3-5. Chromothripsis occurs after micronuclei spontaneously lose nuclear envelope integrity, which generates chromosome fragmentation6. Disruption of the nuclear envelope exposes DNA to the cytoplasm and initiates innate immune proinflammatory signalling7. Despite its importance, the basis of the fragility of the micronucleus nuclear envelope  is not known. Here we show that micronuclei undergo defective nuclear envelope assembly. Only 'core' nuclear envelope proteins8,9 assemble efficiently on lagging chromosomes, whereas 'non-core' nuclear envelope proteins8,9, including nuclear pore complexes (NPCs), do not. Consequently, micronuclei fail to properly import key proteins that are necessary for the integrity of the nuclear envelope and genome. We show that spindle microtubules block assembly of NPCs and other non-core nuclear envelope proteins on lagging chromosomes, causing an irreversible defect in nuclear envelope assembly. Accordingly, experimental manipulations that position missegregated chromosomes away from the spindle correct defective nuclear envelope assembly, prevent spontaneous nuclear envelope disruption, and suppress DNA damage in micronuclei. Thus, during mitotic exit in metazoan cells, chromosome segregation and nuclear envelope assembly are only loosely coordinated by the timing of mitotic spindle disassembly. The absence of precise checkpoint controls may explain why errors during mitotic exit are frequent and often trigger catastrophic genome rearrangements4,5.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Micronúcleos com Defeito Cromossômico / Cromotripsia / Mitose / Membrana Nuclear Limite: Humans Idioma: En Revista: Nature Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Micronúcleos com Defeito Cromossômico / Cromotripsia / Mitose / Membrana Nuclear Limite: Humans Idioma: En Revista: Nature Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos