Your browser doesn't support javascript.
loading
Enhanced Thermal Boundary Conductance in Few-Layer Ti3 C2 MXene with Encapsulation.
Yasaei, Poya; Hemmat, Zahra; Foss, Cameron J; Li, Shixuan Justin; Hong, Liang; Behranginia, Amirhossein; Majidi, Leily; Klie, Robert F; Barsoum, Michel W; Aksamija, Zlatan; Salehi-Khojin, Amin.
Afiliação
  • Yasaei P; Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA.
  • Hemmat Z; Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA.
  • Foss CJ; Electrical and Computer Engineering Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
  • Li SJ; Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA.
  • Hong L; Department of Physics, University of Illinois at Chicago, Chicago, IL, 60607, USA.
  • Behranginia A; Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA.
  • Majidi L; Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA.
  • Klie RF; Department of Physics, University of Illinois at Chicago, Chicago, IL, 60607, USA.
  • Barsoum MW; Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA.
  • Aksamija Z; Electrical and Computer Engineering Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
  • Salehi-Khojin A; Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA.
Adv Mater ; 30(43): e1801629, 2018 Oct.
Article em En | MEDLINE | ID: mdl-30252179
ABSTRACT
Van der Waals interactions in 2D materials have enabled the realization of nanoelectronics with high-density vertical integration. Yet, poor energy transport through such 2D-2D and 2D-3D interfaces can limit a device's performance due to overheating. One long-standing question in the field is how different encapsulating layers (e.g., contact metals or gate oxides) contribute to the thermal transport at the interface of 2D materials with their 3D substrates. Here, a novel self-heating/self-sensing electrical thermometry platform is developed based on atomically thin, metallic Ti3 C2 MXene sheets, which enables experimental investigation of the thermal transport at a Ti3 C2 /SiO2 interface, with and without an aluminum oxide (AlOx ) encapsulating layer. It is found that at room temperature, the thermal boundary conductance (TBC) increases from 10.8 to 19.5 MW m-2 K-1 upon AlOx encapsulation. Boltzmann transport modeling reveals that the TBC can be understood as a series combination of an external resistance between the MXene and the substrate, due to the coupling of low-frequency flexural acoustic (ZA) phonons to substrate modes, and an internal resistance between ZA and in-plane phonon modes. It is revealed that internal resistance is a bottle-neck to heat removal and that encapsulation speeds up the heat transfer into low-frequency ZA modes and reduces their depopulation, thus increasing the effective TBC.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Mater Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Mater Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos