Site occupancy of Fe2+, Fe3+ and Ti4+ in titanomagnetite determined by valence-difference contrast in synchrotron X-ray resonant scattering.
J Synchrotron Radiat
; 25(Pt 6): 1694-1702, 2018 Nov 01.
Article
em En
| MEDLINE
| ID: mdl-30407179
A synchrotron X-ray diffraction study of a single crystal of titanomagnetite shows that the cation distribution of Fe2+, Fe3+ and Ti4+ is of the inverse-spinel type. The valence-difference contrast (VDC) method of resonant scattering was applied at a wavelength of λ = 1.7441â
Å (E = 7.1085â
keV) within the pre-edge of the Fe K absorption spectrum, utilizing the large difference in the real part of anomalous scattering factors, between -7.45 and -6.50, for Fe2+ and Fe3+, respectively. The most plausible atomic arrangement in Ti0.31Fe2.69O4 obtained from our analysis is [Fe3+1.00]A[Fe3+0.38Fe2+1.31Ti4+0.31]BO4, where A and B in an AB2O4-type structure correspond to the tetrahedral and octahedral sites, respectively. This result suggests that titanomagnetite has the complete inverse-spinel structure continuously from the end-member of magnetite, even in the case of relatively high Ti content. The physical properties may be described by the Néel model, which claims that Fe3+ preferentially occupies the tetrahedral site, within a Ti-poor half-region of the solid solution. Based on the ordering scheme the magnetic structure of titanomagnetite is considered to be analogous to that of magnetite. The combination of circularly polarized X-rays and a horizontal-type four-circle diffractometer used in this VDC technique has the advantage of increasing the experimental accuracy and freedom with the simultaneous reduction of experimental noise.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Prognostic_studies
Idioma:
En
Revista:
J Synchrotron Radiat
Assunto da revista:
RADIOLOGIA
Ano de publicação:
2018
Tipo de documento:
Article
País de afiliação:
Japão