Your browser doesn't support javascript.
loading
Protein-Level Interactions as Mediators of Sexual Conflict in Ants.
Dosselli, Ryan; Grassl, Julia; den Boer, Susanne P A; Kratz, Madlen; Moran, Jessica M; Boomsma, Jacobus J; Baer, Boris.
Afiliação
  • Dosselli R; From the ‡ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, Bayliss Building (M316),; Centre for Evolutionary Biology, School of Biological Sciences (M092),; Honey Bee Health Research Group, School of Molecular Sciences (M316), The University of Western Australia, Crawl
  • Grassl J; From the ‡ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, Bayliss Building (M316),; Honey Bee Health Research Group, School of Molecular Sciences (M316), The University of Western Australia, Crawley WA 6009, Australia.
  • den Boer SPA; From the ‡ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, Bayliss Building (M316),; Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.
  • Kratz M; From the ‡ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, Bayliss Building (M316),; Honey Bee Health Research Group, School of Molecular Sciences (M316), The University of Western Australia, Crawley WA 6009, Australia.
  • Moran JM; From the ‡ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, Bayliss Building (M316),; Centre for Evolutionary Biology, School of Biological Sciences (M092),; Honey Bee Health Research Group, School of Molecular Sciences (M316), The University of Western Australia, Crawl
  • Boomsma JJ; Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark;. Electronic address: JJBoomsma@bio.ku.dk.
  • Baer B; Center for Integrative Bee Research (CIBER), Department of Entomology, The University of California, Riverside CA 92506. Electronic address: boris.bar@ucr.edu.
Mol Cell Proteomics ; 18(Suppl 1): S34-S45, 2019 03 15.
Article em En | MEDLINE | ID: mdl-30598476
ABSTRACT
All social insects with obligate reproductive division of labor evolved from strictly monogamous ancestors, but multiple queen-mating (polyandry) arose de novo, in several evolutionarily derived lineages. Polyandrous ant queens are inseminated soon after hatching and store sperm mixtures for a potential reproductive life of decades. However, they cannot re-mate later in life and are thus expected to control the loss of viable sperm because their lifetime reproductive success is ultimately sperm limited. In the leaf-cutting ant Atta colombica,, the survival of newly inseminated sperm is known to be compromised by seminal fluid of rival males and to be protected by secretions of the queen sperm storage organ (spermatheca). Here we investigate the main protein-level interactions that appear to mediate sperm competition dynamics and sperm preservation. We conducted an artificial insemination experiment and DIGE-based proteomics to identify proteomic changes when seminal fluid is exposed to spermathecal fluid followed by a mass spectrometry analysis of both secretions that allowed us to identify the sex-specific origins of the proteins that had changed in abundance. We found that spermathecal fluid targets only seven (2%) of the identified seminal fluid proteins for degradation, including two proteolytic serine proteases, a SERPIN inhibitor, and a semen-liquefying acid phosphatase. In vitro, and in vivo, experiments provided further confirmation that these proteins are key molecules mediating sexual conflict over sperm competition and viability preservation during sperm storage. In vitro, exposure to spermathecal fluid reduced the capacity of seminal fluid to compromise survival of rival sperm in a matter of hours and biochemical inhibition of these seminal fluid proteins largely eliminated that adverse effect. Our findings indicate that A. colombica, queens are in control of sperm competition and sperm storage, a capacity that has not been documented in other animals but is predicted to have independently evolved in other polyandrous social insects.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Formigas / Comportamento Sexual Animal / Proteínas de Insetos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Mol Cell Proteomics Assunto da revista: BIOLOGIA MOLECULAR / BIOQUIMICA Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Formigas / Comportamento Sexual Animal / Proteínas de Insetos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Mol Cell Proteomics Assunto da revista: BIOLOGIA MOLECULAR / BIOQUIMICA Ano de publicação: 2019 Tipo de documento: Article