Your browser doesn't support javascript.
loading
A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells.
Wang, Ligang; Zhou, Huanping; Hu, Junnan; Huang, Bolong; Sun, Mingzi; Dong, Bowei; Zheng, Guanghaojie; Huang, Yuan; Chen, Yihua; Li, Liang; Xu, Ziqi; Li, Nengxu; Liu, Zheng; Chen, Qi; Sun, Ling-Dong; Yan, Chun-Hua.
Afiliação
  • Wang L; Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, Key Laboratory for the Physics and Chemistry of Nanodevices, Beijing Key Laboratory for Theory and
  • Zhou H; Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, Key Laboratory for the Physics and Chemistry of Nanodevices, Beijing Key Laboratory for Theory and
  • Hu J; Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, Key Laboratory for the Physics and Chemistry of Nanodevices, Beijing Key Laboratory for Theory and
  • Huang B; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR.
  • Sun M; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR.
  • Dong B; Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, Key Laboratory for the Physics and Chemistry of Nanodevices, Beijing Key Laboratory for Theory and
  • Zheng G; Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, Key Laboratory for the Physics and Chemistry of Nanodevices, Beijing Key Laboratory for Theory and
  • Huang Y; Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, Key Laboratory for the Physics and Chemistry of Nanodevices, Beijing Key Laboratory for Theory and
  • Chen Y; Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, Key Laboratory for the Physics and Chemistry of Nanodevices, Beijing Key Laboratory for Theory and
  • Li L; Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, Key Laboratory for the Physics and Chemistry of Nanodevices, Beijing Key Laboratory for Theory and
  • Xu Z; Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, Key Laboratory for the Physics and Chemistry of Nanodevices, Beijing Key Laboratory for Theory and
  • Li N; Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, Key Laboratory for the Physics and Chemistry of Nanodevices, Beijing Key Laboratory for Theory and
  • Liu Z; Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, Key Laboratory for the Physics and Chemistry of Nanodevices, Beijing Key Laboratory for Theory and
  • Chen Q; Department of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China.
  • Sun LD; Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, Key Laboratory for the Physics and Chemistry of Nanodevices, Beijing Key Laboratory for Theory and
  • Yan CH; Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, Key Laboratory for the Physics and Chemistry of Nanodevices, Beijing Key Laboratory for Theory and
Science ; 363(6424): 265-270, 2019 01 18.
Article em En | MEDLINE | ID: mdl-30655439
ABSTRACT
The components with soft nature in the metal halide perovskite absorber usually generate lead (Pb)0 and iodine (I)0 defects during device fabrication and operation. These defects serve as not only recombination centers to deteriorate device efficiency but also degradation initiators to hamper device lifetimes. We show that the europium ion pair Eu3+-Eu2+ acts as the "redox shuttle" that selectively oxidized Pb0 and reduced I0 defects simultaneously in a cyclical transition. The resultant device achieves a power conversion efficiency (PCE) of 21.52% (certified 20.52%) with substantially improved long-term durability. The devices retained 92% and 89% of the peak PCE under 1-sun continuous illumination or heating at 85°C for 1500 hours and 91% of the original stable PCE after maximum power point tracking for 500 hours, respectively.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Science Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Science Ano de publicação: 2019 Tipo de documento: Article