Your browser doesn't support javascript.
loading
Frenolicin B Targets Peroxiredoxin 1 and Glutaredoxin 3 to Trigger ROS/4E-BP1-Mediated Antitumor Effects.
Ye, Qing; Zhang, Yinan; Cao, Yanan; Wang, Xiachang; Guo, Yubin; Chen, Jing; Horn, Jamie; Ponomareva, Larissa V; Chaiswing, Luksana; Shaaban, Khaled A; Wei, Qiou; Anderson, Bradley D; St Clair, Daret K; Zhu, Haining; Leggas, Markos; Thorson, Jon S; She, Qing-Bai.
Afiliação
  • Ye Q; Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.
  • Zhang Y; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, KY 40536, USA; Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University
  • Cao Y; Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.
  • Wang X; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, KY 40536, USA; Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University
  • Guo Y; Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.
  • Chen J; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536, USA.
  • Horn J; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, KY 40536, USA.
  • Ponomareva LV; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, KY 40536, USA.
  • Chaiswing L; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA.
  • Shaaban KA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, KY 40536, USA.
  • Wei Q; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA.
  • Anderson BD; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, KY 40536, USA.
  • St Clair DK; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA.
  • Zhu H; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536, USA.
  • Leggas M; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, KY 40536, USA.
  • Thorson JS; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, KY 40536, USA. Electronic addres
  • She QB; Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA. Electronic address: qing-bai.she@uky.edu.
Cell Chem Biol ; 26(3): 366-377.e12, 2019 03 21.
Article em En | MEDLINE | ID: mdl-30661989
ABSTRACT
Peroxiredoxin 1 (Prx1) and glutaredoxin 3 (Grx3) are two major antioxidant proteins that play a critical role in maintaining redox homeostasis for tumor progression. Here, we identify the prototypical pyranonaphthoquinone natural product frenolicin B (FB) as a selective inhibitor of Prx1 and Grx3 through covalent modification of active-site cysteines. FB-targeted inhibition of Prx1 and Grx3 results in a decrease in cellular glutathione levels, an increase of reactive oxygen species (ROS), and concomitant inhibition of cancer cell growth, largely by activating the peroxisome-bound tuberous sclerosis complex to inhibit mTORC1/4E-BP1 signaling axis. FB structure-activity relationship studies reveal a positive correlation between inhibition of 4E-BP1 phosphorylation, ROS-mediated cancer cell cytotoxicity, and suppression of tumor growth in vivo. These findings establish FB as the most potent Prx1/Grx3 inhibitor reported to date and also notably highlight 4E-BP1 phosphorylation status as a potential predictive marker in response to ROS-based therapies in cancer.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Espécies Reativas de Oxigênio / Proteínas de Ciclo Celular / Proteínas Adaptadoras de Transdução de Sinal / Glutarredoxinas / Peroxirredoxinas / Antineoplásicos Tipo de estudo: Prognostic_studies Limite: Animals / Humans / Male Idioma: En Revista: Cell Chem Biol Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Espécies Reativas de Oxigênio / Proteínas de Ciclo Celular / Proteínas Adaptadoras de Transdução de Sinal / Glutarredoxinas / Peroxirredoxinas / Antineoplásicos Tipo de estudo: Prognostic_studies Limite: Animals / Humans / Male Idioma: En Revista: Cell Chem Biol Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos