Your browser doesn't support javascript.
loading
miRLocator: A Python Implementation and Web Server for Predicting miRNAs from Pre-miRNA Sequences.
Zhang, Ting; Ju, Lie; Zhai, Jingjing; Song, Yujia; Song, Jie; Ma, Chuang.
Afiliação
  • Zhang T; State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, China.
  • Ju L; Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, China.
  • Zhai J; College of Information Engineering, Northwest A&F University, Yangling, China.
  • Song Y; State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, China.
  • Song J; Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, China.
  • Ma C; College of Information Engineering, Northwest A&F University, Yangling, China.
Methods Mol Biol ; 1932: 89-97, 2019.
Article em En | MEDLINE | ID: mdl-30701493
microRNAs (miRNAs) are short, noncoding regulatory RNAs derived from hairpin precursors (pre-miRNAs). In synergy with experimental approaches, computational approaches have become an invaluable tool for identifying miRNAs at the genome scale. We have recently reported a method called miRLocator, which applies machine learning algorithms to accurately predict the localization of most likely miRNAs within their pre-miRNAs. One major strength of miRLocator is the fact that the machine learning-based miRNA prediction model can be automatically trained using a set of miRNAs of particular interest, with informative features extracted from miRNA-miRNA* duplexes and the optimized ratio between positive and negative samples. Here, we present a detailed protocol for miRLocator that performs the training and prediction processes using a python implementation and web interface. The source codes, web interface, and manual documents are freely available to academic users at https://github.com/cma2015/miRLocator .
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Precursores de RNA / Biologia Computacional / MicroRNAs Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Methods Mol Biol Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2019 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Precursores de RNA / Biologia Computacional / MicroRNAs Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Methods Mol Biol Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2019 Tipo de documento: Article País de afiliação: China