Your browser doesn't support javascript.
loading
Assessment of MC-PDFT Excitation Energies for a Set of QM/MM Models of Rhodopsins.
Marín, María Del Carmen; De Vico, Luca; Dong, Sijia S; Gagliardi, Laura; Truhlar, Donald G; Olivucci, Massimo.
Afiliação
  • Marín MDC; Department of Biotechnologies, Chemistry and Pharmacy , University of Siena , 53100 Siena , Italy.
  • De Vico L; Chemistry Department , Bowling Green State University , Bowling Green , 43403 Ohio , United States.
  • Dong SS; Department of Biotechnologies, Chemistry and Pharmacy , University of Siena , 53100 Siena , Italy.
  • Gagliardi L; Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , Minneapolis , Minnesota 55455-0431 , United States.
  • Truhlar DG; Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , Minneapolis , Minnesota 55455-0431 , United States.
  • Olivucci M; Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , Minneapolis , Minnesota 55455-0431 , United States.
J Chem Theory Comput ; 15(3): 1915-1923, 2019 Mar 12.
Article em En | MEDLINE | ID: mdl-30721054
ABSTRACT
A methodology for the automatic production of quantum mechanical/molecular mechanical (QM/MM) models of retinal-binding rhodopsin proteins and subsequent prediction of their spectroscopic properties has been proposed recently by some of the authors. The technology employed for the evaluation of the excitation energies is called Automatic Rhodopsin Modeling (ARM), and it involves the use of the complete active space self-consistent field (CASSCF) method followed by a multiconfiguration second-order perturbation theory (in particular, CASPT2) calculation of external correlation energies. Although it was shown that ARM is capable of successfully reproducing and predicting spectroscopic property trends in chromophore-embedding protein sets, practical applications of such technology are limited by the high computational costs of the multiconfiguration perturbation theory calculations. In the present work we benchmark the more affordable multiconfiguration pair-density functional theory (MC-PDFT) method whose accuracy has been recently validated for retinal chromophores in the gas phase, indicating that MC-PDFT could potentially be used to analyze large (e.g., few hundreds) sets of rhodopsin proteins. Here, we test this theory for a set of rhodopsin QM/MM models whose experimental absorption maxima (λ a max) have been measured. The results indicate that MC-PDFT may be employed to calculate λ a max values for this important class of photoresponsive proteins.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Rodopsina / Bactérias / Bacteriorodopsinas Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: J Chem Theory Comput Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Itália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Rodopsina / Bactérias / Bacteriorodopsinas Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: J Chem Theory Comput Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Itália