Your browser doesn't support javascript.
loading
Bayesian-based noninvasive prenatal diagnosis of single-gene disorders.
Rabinowitz, Tom; Polsky, Avital; Golan, David; Danilevsky, Artem; Shapira, Guy; Raff, Chen; Basel-Salmon, Lina; Matar, Reut Tomashov; Shomron, Noam.
Afiliação
  • Rabinowitz T; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel.
  • Polsky A; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel.
  • Golan D; Faculty of Industrial Engineering and Management, Technion, Haifa, 3200003, Israel.
  • Danilevsky A; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel.
  • Shapira G; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel.
  • Raff C; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel.
  • Basel-Salmon L; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel.
  • Matar RT; Raphael Recanati Genetic Institute, Rabin Medical Center, Beilinson Hospital, Petah Tikva, 4941494, Israel.
  • Shomron N; Raphael Recanati Genetic Institute, Rabin Medical Center, Beilinson Hospital, Petah Tikva, 4941494, Israel.
Genome Res ; 29(3): 428-438, 2019 03.
Article em En | MEDLINE | ID: mdl-30787035
In the last decade, noninvasive prenatal diagnosis (NIPD) has emerged as an effective procedure for early detection of inherited diseases during pregnancy. This technique is based on using cell-free DNA (cfDNA) and fetal cfDNA (cffDNA) in maternal blood, and hence, has minimal risk for the mother and fetus compared with invasive techniques. NIPD is currently used for identifying chromosomal abnormalities (in some instances) and for single-gene disorders (SGDs) of paternal origin. However, for SGDs of maternal origin, sensitivity poses a challenge that limits the testing to one genetic disorder at a time. Here, we present a Bayesian method for the NIPD of monogenic diseases that is independent of the mode of inheritance and parental origin. Furthermore, we show that accounting for differences in the length distribution of fetal- and maternal-derived cfDNA fragments results in increased accuracy. Our model is the first to predict inherited insertions-deletions (indels). The method described can serve as a general framework for the NIPD of SGDs; this will facilitate easy integration of further improvements. One such improvement that is presented in the current study is a machine learning model that corrects errors based on patterns found in previously processed data. Overall, we show that next-generation sequencing (NGS) can be used for the NIPD of a wide range of monogenic diseases, simultaneously. We believe that our study will lead to the achievement of a comprehensive NIPD for monogenic diseases.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Diagnóstico Pré-Natal / Testes Genéticos / Doenças Genéticas Inatas Tipo de estudo: Diagnostic_studies / Prognostic_studies / Screening_studies Limite: Humans Idioma: En Revista: Genome Res Assunto da revista: BIOLOGIA MOLECULAR / GENETICA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Israel

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Diagnóstico Pré-Natal / Testes Genéticos / Doenças Genéticas Inatas Tipo de estudo: Diagnostic_studies / Prognostic_studies / Screening_studies Limite: Humans Idioma: En Revista: Genome Res Assunto da revista: BIOLOGIA MOLECULAR / GENETICA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Israel