Your browser doesn't support javascript.
loading
Increasing jojoba-like wax ester production in Saccharomyces cerevisiae by enhancing very long-chain, monounsaturated fatty acid synthesis.
Wenning, Leonie; Ejsing, Christer S; David, Florian; Sprenger, Richard R; Nielsen, Jens; Siewers, Verena.
Afiliação
  • Wenning L; Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden.
  • Ejsing CS; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden.
  • David F; Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230, Odense, Denmark.
  • Sprenger RR; Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden.
  • Nielsen J; Biopetrolia AB, Kemivägen 10, 412 96, Gothenburg, Sweden.
  • Siewers V; Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230, Odense, Denmark.
Microb Cell Fact ; 18(1): 49, 2019 Mar 11.
Article em En | MEDLINE | ID: mdl-30857535
ABSTRACT

BACKGROUND:

Fatty acids (FAs) with a chain length of more than 18 carbon atoms (> C18) are interesting for the production of specialty compounds derived from these FAs. These compounds include free FAs, like erucic acid (C221-Δ13), primary fatty alcohols (FOHs), like docosanol (C220-FOH), as well as jojoba-like wax esters (WEs) (C38-WE to C44-WE), which are esters of (very) long-chain FAs and (very) long-chain FOHs. In particular, FAs, FOHs and WEs are used in the production of chemicals, pharmaceuticals and cosmetic products. Jojoba seed oil is highly enriched in diunsaturated WEs with over 70 mol% being composed of C181-C241 monounsaturated FOH and monounsaturated FA moieties. In this study, we aim for the production of jojoba-like WEs in the yeast Saccharomyces cerevisiae by increasing the amount of very long-chain, monounsaturated FAs and simultaneously expressing enzymes required for WE synthesis.

RESULTS:

We show that the combined expression of a plant-derived fatty acid elongase (FAE/KCS) from Crambe abyssinica (CaKCS) together with the yeast intrinsic fatty acid desaturase (FAD) Ole1p leads to an increase in C201 and C221 FAs in S. cerevisiae. We also demonstrate that the best enzyme candidate for C241 FA production in S. cerevisiae is a FAE derived from Lunaria annua (LaKCS). The combined overexpression of CaKCS and Ole1p together with a fatty acyl reductase (FAR/FAldhR) from Marinobacter aquaeolei VT8 (MaFAldhR) and a wax synthase (WS) from Simmondsia chinensis (SciWS) in a S. cerevisiae strain, overexpressing a range of other enzymes involved in FA synthesis and elongation, leads to a yeast strain capable of producing high amounts of monounsaturated FOHs (up to C221-FOH) as well as diunsaturated WEs (up to C462-WE).

CONCLUSIONS:

Changing the FA profile of the yeast S. cerevisiae towards very long-chain monounsaturated FAs is possible by combined overexpression of endogenous and heterologous enzymes derived from various sources (e.g. a marine copepod or plants). This strategy was used to produce jojoba-like WEs in S. cerevisiae and can potentially be extended towards other commercially interesting products derived from very long-chain FAs.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Ceras / Óleos de Plantas / Ácidos Graxos Monoinsaturados Idioma: En Revista: Microb Cell Fact Assunto da revista: BIOTECNOLOGIA / MICROBIOLOGIA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Suécia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Ceras / Óleos de Plantas / Ácidos Graxos Monoinsaturados Idioma: En Revista: Microb Cell Fact Assunto da revista: BIOTECNOLOGIA / MICROBIOLOGIA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Suécia